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ABSTRACT OF THE DISSERTATION

Fractal Zeta Functions in Metric Measure Spaces

by

Alexander M. Henderson

Doctor of Philosophy, Graduate Program in Mathematics

University of California, Riverside, June 2020

Dr. Michel Lapidus, Chairperson

Fractal zeta functions associated to bounded subsets of Euclidean spaces relate the geometry of a

set to the spectrum of a Laplace operator defined on that set, thereby making it possible to rephrase

certain spectral problems in terms of the set’s geometry, and vice versa. We generalize the global

theory of fractal zeta functions in Euclidean spaces to a broader class of metric spaces with finite

Assouad dimension. We also introduce a local theory which gives a more refined tool for analyzing

multifractal measures.
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Preface

Fractal zeta functions were first introduced in the 1990s by Lapidus and various collaborators in order

to study certain spectral problems in one-dimensional Euclidean space (e.g. [Lap91,Lap93,LM95]).

These zeta functions provide a tool for relating the geometry of a set with spectrum of the Dirichlet

operator which operates on that set. In the intervening quarter century, these results have been

extended and generalized to describe the geometry more general spaces (e.g. [LL08,LvF13,LRZ̆16,

Wat17]). The principle novelties of this thesis are two-fold: first, the theory of global fractal zeta

functions is generalized to homogeneous metric measure spaces; and second, a local theory of fractal

zeta functions is introduced.

The structure of this thesis

Chapter 1 provides motivation for the work done in this thesis, beginning with Kac’s classic question

“Can one hear the shape of a drum?” [Kac66]. This chapter gives a rough outline of previous work

on fractal zeta functions, and concludes with an example computation in the Euclidean setting.

Chapter 2 outlines essential notation and definitions. The material presented in this chapter is

not novel, but its inclusion should help orient the reader and establish notational conventions used

throughout.

Chapter 3 introduces the distance and tube zeta functions associated to subsets of metric spaces

which satisfy certain homogeneity conditions. This chapter shows that these fractal zeta functions

have many of the important properties which might be expected by analogy to the results in [LRZ̆16].

The main novel results are generalized versions of the statements in [LRZ̆16, Thm. 2.1.11], which
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concern the domains of holomorphicity of fractal zeta functions. Finally, Section 3.4 introduces

relative fractal drums, which are an useful computational tool.

Chapter 4 recalls the construction of the p-adic numbers, then gives several example computations

in p-adic spaces. Spaces of p-adic numbers provide an interesting sandbox for applying the theory

of fractal zeta functions over more general metric spaces—such spaces are quite regular (in the

sense of Ahlfors, for example) and the structure of the metric on Qp ensures that self-similar sets

are all “lattice,” a distinction which is important in previous works which study self-similar fractal

strings on R. Fractal zeta functions over sets of p-adic numbers may also be of greater interest via

the connections between fractal zeta functions and the classic Riemann zeta function. It is worth

noting that the results in this chapter are similar to those described in [LL08], though the techniques

employed here are novel.

Chapter 5 introduces local fractal zeta functions. Local fractal zeta functions are a tool somewhat

analogous to the zeta functions associated to a relative fractal drum. However, in contrast to the

theory developed in previous work, the local fractal zeta functions do not rely on an a priori notion of

ambient dimension, and therefore provide intrinsic information regarding the geometry of a metric

space. The chapter finishes with several examples.

The thesis concludes in Chapter 6 with a discussion of several open problems.

xiv



Chapter 1

Introduction

1.1 Can one hear the shape of a drum?

In his classic paper [Kac66], Mark Kac poses the question “Can one hear the shape of a drum?”[1]

For example, take the open unit disk

D = {(x, y) ∈ R2 | x2
+ y

2 < 1}

in R2 and imagine stretching a membrane across this disk so that it may vibrate freely in the interior,

but is fixed on the boundary (see Figure 1.1). When this drum is struck, it will produce a sound.

If a membrane is similarly stretched across another bounded open set Ω in R2, and this new drum

produces a sound which is indistinguishable from that of the drum corresponding to the disk D, must

it necessarily be the case that Ω is isometric to the disk?

The analogous problem in one dimension provides an informative first step in understanding

Kac’s problem: suppose that a string of uniform density is stretched and attached to two pegs. If

the string is plucked, it will vibrate and produce a tone. The vibrations of the string are modeled by

solutions u to the wave equation, where u(t, x) denotes the height of a point x on the string (above

[1]This question had likely been floating around the mathematical community for quite a long time before Kac wrote it

down. Kac himself credits Bochner with introducing him to the problem [Kac66, p. 3].
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R

D

Figure 1.1: A compact set D in R2 can be imagined as the head of a drum.

or below its rest position) at time t. That is, u solves the boundary value problem




utt (t, x) − c2∆u(t, x) = 0 for (t, x) ∈ [0,∞) × (0, L), and

u(t,0) = u(t, L) = 0 for t ∈ [0,∞),
(1.1.1)

where the two pegs are at the points x = 0 and x = L, the symbol ∆ denotes the Laplace operator d2

dx2 ,

and c is a constant which depends on the density of the string and the tension acting along the string.

This equation can be solved via the technique of separation of variables. Under the ansatz that

u(t, x) = T(t)X(x) for some functions T and X , the differential equation becomes

T ′′(t)
c2T(t) =

X ′′(x)
X(x) = λ,

2



where λ does not depend on either t or x, and is therefore a constant. This gives rise to the system

of ordinary differential equations




X ′′(x) − λX(x) = 0

T ′′(t) − λc2T(t) = 0.

If λ = 0, then there are no nontrivial solutions which satisfy the boundary conditions given at (1.1.1).

Otherwise, the first equation can be solved by making the additional ansatz that X(x) = eσx for

some value σ. Under this assumption,

X ′′(x) − λX(x) = 0 =⇒ σ2eσx − λeσx
= 0 =⇒ σ = ±

√
λ.

There are no nontrivial solutions if λ > 0, but if λ < 0, then the assumed form of X gives rise to the

family of solutions

X(t) = c1e%

√
|λ |x
+ c2e−%

√
|λ |x

where c1 and c2 are constants, and %
2
= −1. It follows from the boundary conditions X(0) = X(L) = 0

that λ must satisfy

√
λ =

nπ

L
=: ωn

for some n ∈ N.[2] Indeed, for each n ∈ N, the function

Xn(x) =
1

2%

(
e%ωnx − e−%ωnx

)
= sin(ωnx)

is an eigenfunction of the Laplace operator ∆ with corresponding eigenvalue ω2
n. Solutions to

the first ordinary differential equation may be written as (possibly infinite) linear combinations of

these eigenfunctions, and general solutions to the wave equation (1.1.1) may be written as (possibly

[2]Throughout this text, the symbol N denotes the set of natural numbers, which is the set of strictly positive integers.
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infinite) linear combinations of functions of the form

un(t, x) =
(
an cos(ωnct) + bn sin(ωnct)

)
sin(ωnx),

where an and bn are constants depending on an initial condition. The spectrum of eigenvalues

corresponds to the “frequencies” of vibration—if the vibrating string is thought of as a string on a

harp, this can be interpreted as the collection of tones and overtones which are heard when the string

is plucked.

The eigenvalues of the Laplace operator uniquely determine the length of the interval, since

ωn =
nπ

L
=⇒ L =

nπ

ωn

.

In particular, the least eigenvalue ω1 (the “fundamental frequency”) determines the length of the

string as

L =
π

ω1

.

In this setting, Kac’s question becomes “If two strings are plucked and produce the same tone, must

they be of the same length?”, which has an affirmative answer. Perhaps more importantly, this

example demonstrates that Kac’s question may be rephrased as an inverse spectral problem: if the

Laplace operators on two domains Ω1 and Ω2 are identical—that is, if Ω1 and Ω2 are isospectral—

must they be congruent?

Continue to work in a slightly more general one-dimensional setting. Let Ω be a bounded open

subset of R, which may be written as the (possibly infinite) disjoint union of open intervals. If

strings of the same uniform density are attached to the endpoints of each such interval and placed

under the same uniform tension, then Ω becomes a harp. If the strings of this harp are all plucked,

the vibration of the strings is modeled by solutions to the boundary value problem




utt (t, x) − c2∆(t, x) for (t, x) ∈ [0,∞) ×Ω, and

u(t, x) = 0 for (t, x) ∈ [0,∞) × ∂Ω.
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As in the case of a single string, the “sound” produced by this harp can be described in terms of

the eigenvalues (or, more generally, the spectrum) of the Laplace operator, i.e. the solutions to the

Dirichlet eigenvalue problem 

∆X = λX if x ∈ Ω, and

X = 0 if x ∈ ∂Ω.

The corresponding inverse spectral problem is explored by [Lap93] and [LM95], wherein conditions

under which the problem has an affirmative answer are described. A summary of the problem and

relevant results can be found in [LvF13, Ch. 9].

1.2 Fractal Zeta Functions

The geometric zeta function associated to bounded open subset of R is an important tool in the study

of the inverse spectral problem described above. In brief, a fractal harp L is a bounded, open subset

of R. Any such set can be written as the disjoint union of countably many open intervals of finite

length, and any two such sets are isometric if they consist of intervals of the same lengths. Hence a

fractal harp may be thought of as a sequence of lengths, i.e.

L = (ℓ1, ℓ2, ℓ3, . . . ),

where each ℓj ∈ R is the length of one of the open intervals comprising L. Define the geometric

zeta function corresponding to a fractal harp L by

ζL(s) :=

∞∑
j=1

ℓsj ,

where s is a complex variable. The geometric zeta function was introduced in order to study the

Dirichlet operator on L, but it is itself an object of interest.

In general, the series defining the geometric zeta function will converge on a right half-plane

bounded by the “fractal dimension” of the boundary of L, and will have a singularity at this

dimension. Under relatively mild hypotheses on L, the geometric zeta function will extend to

5



R

ε < 2ε

Figure 1.2: The harp L consists of the three open intervals shown in black, and a tubular neigh-

borhood of radius ε is shown in grey. The first two intervals of L are longer than 2ε, and each

contribute two intervals to the tubular neighborhood. The third interval has length less than 2ε, and

so contributes only a single interval to the tubular neighborhood.

a meromorphic function on a larger open domain which strictly contains the right half-plane of

convergence. In this case, the singularity at the dimension will be a pole—in a meaningful sense,

this pole is the fractal dimension of the fractal string. Other poles in the domain of meromorphic

continuation also provide useful geometric information—for example, tube formulæ expressed in

terms of the set of poles.

Let ζL denote the geometric zeta function corresponding to a fractal string L. Assume that ζL

extends to a meromorphic function on some “sufficiently large” domain, and let P(ζL) denote the

set of poles ζL on that domain. For ε > 0, a tubular neighborhood of the boundary of L with radius ε

is the collection of points in L which are less than ε units from the boundary—see Figure 1.2. Let

V(ε) denote the volume (one-dimensional Lebesgue measure) of such a tubular neighborhood. For

example, if L = (0,1), then

V (ε) =




2ε if ε < 1
2
, and

1 if ε ≥ 1
2
.

If L is sufficiently “well-behaved”, then

V(ε) =
∑

ω∈P(ζL )
res

(
ζL(s)(2ε)1−s

s(1 − s) ;ω

)
+ error(ε),

where error(ε) is an error term, which can be given explicitly in terms of ε. This and other volume

formulæ are discussed in much greater detail in [LvF13, Ch. 8].
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The geometric zeta function is a fundamentally “one-dimensional” tool—it does not directly

generalize to higher dimensions. However, the observation that the volume of a tubular neighborhood

of the boundary of a harp is given in terms of the geometric zeta function motivates generalizations

to higher dimensional spaces.

Let E be a bounded subset of Rd, and for any δ > 0, let

Eδ := {x ∈ Rd | d(x,E) < δ}

denote a δ-neighborhood of E . Define the tube zeta function ζ̃E and the distance zeta function ζE

corresponding to E by the integrals

ζ̃E (s) :=

∫ δ

0

ts−d−1 |Et | dt and ζE (s) :=

∫
Eδ

d(x,E)s−d dx,

where |Et | denotes the Lebesgue measure of the set Et . A change of variables relates the two zeta

functions, with the precise functional relation being

ζE (s) = δs−d |Eδ | + (d − s)ζ̃E (s).

From this presentation, it is apparent that the two zeta functions differ only be an entire function,

hence they have similar analytic properties. These properties are analogous to those of the geometric

zeta function. For example, the higher dimensional zeta functions converge on a half-plane to the

right of the “fractal dimension” of E , and the volume of a tubular neighborhood of E can be expressed

in terms of the residues of the tube zeta function.

Example 1.1. Roughly speaking, the Sierpinski carpet is the limiting object in a recursive construc-

tion. As a basis for the construction, let E0 be the closed unit square in R2, i.e. the set

E0 := [0,1]2.
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E0 E1 E2

Figure 1.3: The first three stages in the construction of the Sierpinski carpet.

The set En is composed of 8n squares with side length 3−n. To obtain En+1 from En, divide each of

these 8n squares into nine congruent squares of side length 3−(n+1), and remove the center square.

The first three sets obtained via this construction are shown in Figure 1.3. The Sierpinski carpet is

the set

SC =
∞⋂
j=0

Ej .

The distance zeta function associated to the Sierpinski carpet is given by

ζSC(s) =
∫
SCδ

d(x,SC)s−2 dx,

where it is convenient to assume that δ > 1
6
. As shown in Figure 1.4, the δ-neighborhood SCδ may

be decomposed into four quarter circles, four rectangles, and the union of the removed squares. Thus

ζSC(s) = 4

∫ π/2

0

∫ δ

0

(r2)s−2r dr dθ︸                         ︷︷                         ︸
quarter circles

+ 4

∫ 1

0

∫ δ

0

xs−2
2 dx2 dx1︸                     ︷︷                     ︸

rectangles

+

∑
U=removed square

∫
U

d(x,SC)s−2 dx.
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Figure 1.4: With δ > 1
6
, a δ-neighborhood of the Sierpinski carpet may be decomposed into four

quarter circles (at the outside corners), four rectangles (along the outside edges), and the union of

squares removed in the construction.

Computing the first two integrals is an exercise in elementary multivariable calculus. Performing

these computations simplifies the distance zeta function to

ζSC(s) = 2π
δs

s
+ 4

δs−1

s − 1
+

∑
U=removed square

∫
U

d(x,SC)s−2 dx. (1.2.1)

To compute the last integral, it is helpful to first determine what each removed square contributes to

the distance zeta function.

Let Un be one of the (open) squares removed in the n-th stage of the construction of the Sierpinski

carpet, so that the length of each side of Un is 3−n. The goal now is to compute

∫
Un

d(x,SC)s−2 dx.

Following the hint shown in Figure 1.5, this integral may be evaluated as

∫
Un

d(x,SC)s−2 dx = 8

∫ 3−n/2

0

∫ x1

0

xs−2
2 dx2 dx1 =

(
8

s(s − 1)

) (
1

2 · 3n

)s
.
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b

Figure 1.5: Orient a square of side length L so that the lower-left corner sits at the origin and so

that the sides sit along the horizontal and vertical axes. The distance from a point in the shaded

region to the boundary of the square is the height of the point above the horizontal axis, e.g.

d((x1, x2), ∂(square)) = x2.

In the n-th stage of the construction, 8n such squares are removed, implying that

∑
U=removed square

∫
U

d(x,SC)s−2 dx =

∞∑
n=1

(
8n

∫
Un

d(x,SC)s−2 dx

)

=

8

2ss(s − 1)

∞∑
n=1

8n
(

1

3n

)s

=

26−s

s(s − 1)

(
1

3s − 8

)
,

which gives the remaining term in the distance zeta function at (1.2.1).

The distance zeta function associated to the Sierpinski carpet is therefore given by

ζSC(s) = 2π
δs

s
+ 4

δs−1

s − 1
+

26−s

s(s − 1)

(
1

3s − 8

)
.

This function is meromorphic on the entire complex plane (“mentire”) and possesses simple poles

at s = 0, 1 and for

s ∈ log(8)
log(3) + %

2πZ

log(3),

where % denotes the imaginary unit, which satisfies %
2
= −1. ⊳
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Chapter 2

Background

2.1 Pushforward measures

The following definition and theorem are stated in [Bog06, §3.6].

Definition 2.1. Let (X,M ) and (Y,N ) be two measurable spaces, and let f : X → Y be an

(M ,N )-measurable function. Then for any bounded (or bounded from below) measure µ on M ,

the formula

f∗(µ) : N 7→ µ
(

f −1(N)
)
, N ∈ N

defines a measure on N called the pushforward measure of µ under f .

Theorem 2.2 ([Bog06, Thm. 3.6.1]). Let (X,M ) and (Y,N ) be two measurable spaces, and let µ

be a nonnegative measure on M . An N -measurable function g on Y is integrable with respect to

the measure f∗(µ) if and only if the function g ◦ f is integrable with respect to µ. Moreover,

∫
Y

g(y) d( f∗(µ))(y) =
∫
X

(g ◦ f )(x) dµ(x). (2.1.1)

If X and Y are Euclidean spaces (e.g. X = Y = Rd), then Theorem 2.2 reduces to the usual

change of variables formula, thus (2.1.1) provides a more general change of variables formula for

measure spaces.
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2.2 Notions of dimension

Throughout this section, (X, d, µ) is metric measure space with complete metric d, and Borel regular

measure µ. Additionally, the measure has the property that each ball has finite, nonzero measure,

that is,

0 < µ(B(x, r)) < ∞

for all x ∈ X and finite r > 0.

Definition 2.3. For a fixed q ≥ 0, the space X is Ahlfors q-regular (or simply Ahlfors regular) if

there exists a constant M > 0 such that

1

M
rq ≤ µ(B(x, r)) ≤ Mrq

for all x ∈ X and r > 0.

The Ahlfors regularity condition essentially states that all balls in X scale in the same manner

(up to to a multiplicative constant). Ahlfors regular spaces are then extremely homogeneous in the

sense that the scaling properties of a ball are independent both of the ball’s location in the space and

its radius.

Definition 2.4. For a fixed q ≥ 0, the measure µ is q-homogeneous on X if there is a constant M > 0

such that

µ(B(x, r))
rq

≤ M
µ(B(ξ, ρ))

ρq

for all 0 < ρ < r, x ∈ X , and ξ ∈ B(x, r). If there is some q < ∞ such that µ is q-homogenous on X ,

then µ is homogeneous on X .

Definition 2.5. The measure theoretic Assouad dimension of (X, d, µ) is defined to be

dimAs(X, d, µ) := inf {q | µ is q-homogenous on X} .

If there is no danger of ambiguity, omit the metric and measure from the notation, and write dimAs(X).
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It appears that this notion of dimension was introduced by Lehrbäck and Tuominen in [LT13],

where it is called the “doubling dimension” of X . Their nomenclature stems from the observation

that if a measure has the doubling property, i.e. if there is a “doubling constant” Md such that

µ(B(x,2r)) ≤ Mdµ(B(x, r))

for all x ∈ X and r > 0, then µ will be q-homogeneous with q = log2(Md). The doubling constant

gives an upper bound on the dimension of a space—indeed, a measure is doubling if and only if it

is homogeneous.

Unfortunately, authors use the term “doubling dimension” inconsistently in the literature on

metric spaces. Instead of using this potentially ambiguous term, adopt the phrase “measure theoretic

Assouad dimension” for the notion presented in Definition 2.5. The construction here is in terms of

the measures of balls, which parallels the usual defintion of the Assouad dimension in terms of ball

counting functions.[1]

Definition 2.6. Let E ⊆ X be bounded. Then for t > 0, the t-neighborhood of E is the set

Et := {x ∈ X | d(x,E) < t}

Definition 2.7. Suppose that dimAs(X) = Q < ∞ and let E ⊆ X be bounded. For q ≥ 0, the

q-dimensional lower Minkowski content of E is

Mq(E) := lim inf
tց0

µ(Et )
tQ−q .

Similarly, the s-dimensional upper Minkowski content of E is

M
q(E) := lim sup

tց0

µ(Et )
tQ−q .

[1]As a historical note, the notion that is now commonly referred to as the Assouad dimension was originally introduced

by Bouligand [Bou28], but received little attention at the time. It was reintroduced much later by Assouad [Ass79] in his

1979 thesis, where it was used to study certain embedding problems.
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Mq(E) = ∞ when q < D

MD(E)

Mq(E) = 0 when q > D

D := dimMi(E)

∞

b

Figure 2.1: The graph ofMq(E) as a function of q. With D := dimMi(E), the q-dimensional lower

Minkowski content of E is infinite whenever q is less than D, and zero whenever q is greater than D.

When q = D, the lower Minkowski content of E can take any value (depending on E). A similar

result holds forM
q(E).

Observe that there is generally a “natural” dimension in which to measure the (upper or lower)

Minkowski content of a set. Suppose thatMD(E) < ∞ and that q > D. Then

Mq(E) = lim inf
tց0

µ(Et )
tQ−q = lim inf

tց0

µ(Et )
tQ−D tq−D = Mq(E) lim inf

tց0
tq−D = 0.

Similarly, if MD(E) is finite, then Mq(E) will be infinite for any q < D. Hence there is a unique

(possibly infinite) value D which such that the q-dimensional lower Minkowski content is zero for q

greater than D, and infinite for q less than D, see Figure 2.1. A similar result holds for the upper

Minkowski content, giving rise to the notion of Minkowski dimension:

Definition 2.8. Suppose that dimAs(X) = Q < ∞ and let E ⊆ X be bounded. The lower and upper

Minkowski dimensions of A are defined to be

dimMi(E) := inf
{
s
��Mq(E) = 0

}
, and dimMi(E) := inf

{
s
��Mq(E) = 0

}
,

respectively. If dimMi(E) = dimMi(E), then the Minkowski dimension of E is defined to be the

common value, denoted dimMi(E).
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Equivalently, the lower and upper Minkowski dimensions may be defined as

dimMi(E) := sup
{
s
��Mq(E) = +∞

}
and dimMi(E) := sup

{
s

���Mq(E) = +∞
}
,

Both characterizations of the Minkowski dimensions are used in the sequel. In particular, ifMq(E)

(orM
q(E), resp.) is finite and nonzero, then dimMi(E) = q (or dimMi(E) = q, resp.).

Note that the converse does not hold—there are examples of sets with lower (upper, resp.)

Minkowski dimension q and either zero or infinite q-dimensional lower (upper, resp.) Minkowski

content. For instance, a countably infinite, uniformly discrete subset of Rd (such as Zd) will have

lower Minkowski dimension zero, but has infinite 0-dimensional lower Minkowski content.

Fix some ε > 0 and note that if E ⊆ X is bounded, then so too is Eε . By assumption, all balls

have finite measure, and so µ(Eε) < ∞. With Q = dimAs(X), take limits over t < ε to obtain

M
q(E) = lim sup

tց0

µ(Et )
tQ−q ≤ lim sup

tց0

µ(Eε)
tQ−q = µ(Eε) · lim sup

tց0

tq−Q = 0

whenever q > Q. The measure theoretic Assouad dimension of the space X gives an upper bound

for the upper Minkowski dimension of bounded subsets of X . As the upper Minkowski dimension

bounds the lower Minkowski dimension, the relations

dimMi(E) ≤ dimMi(E) ≤ dimAs(X)

hold for any bounded E ⊆ X . While each of the inequalities may be strict, the following lemma

gives an important case in which equality holds throughout.

Lemma 2.9. Suppose that dimAs(X) = Q < ∞ and let E ⊆ X be bounded. If µ(E) > 0 then

dimMi(E) = dimMi(E) = dimAs(X).

In particular, the Minkowski dimension exists and is equal to the ambient measure theoretic Assouad

dimension of the space.
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Proof. The proof is by contraposition. Suppose that

dimMi(E) < Q,

which implies that dimMi(E) = 0. The map t 7→ µ(Et ) is a nondecreasing function of t and is

bounded from below by zero. This implies that limtց0 µ(Et ) exists. But then

lim
tց0

µ(Et ) = lim inf
tց0

µ(Et ) = lim inf
tց0

µ(Et )
tQ−Q = M

Q(E) = 0.

As E ⊆ Et for all t > 0, the monotonicity of the measure implies that µ(E) ≤ µ(Et ) for all such t.

Take limits to obtain

µ(E) = lim
tց0

µ(E) ≤ lim
tց0

µ(Et ) = 0.

Therefore if the lower Minkowski dimension of E is strictly less than measure theoretic Assouad

dimension of the ambient space, then µ(E) = 0, which is the desired result. �

2.3 Iterated function systems and self-similar measures

Iterated function systems

Definition 2.10. An iterated function system (or IFS) on a metric space (X, d) is a collection of

functions {ϕi : X → X}i∈I indexed by a finite set I . Associated to each IFS, there is a map of sets

Φ : 2X → 2X , defined by

Φ(E) =
⋃
i∈I

ϕi(E),

where 2X denotes the powerset of X . By a slight abuse of notation, write Φ = {ϕi}i∈I .

Definition 2.11. Let (X, d) be a metric space. A function ϕ : X → X is a contraction mapping if

there is some constant c ∈ (0,1) such that

d(ϕ(x), ϕ(y)) ≤ cd(x, y) (2.3.1)
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for all x, y ∈ X . If equality holds in (2.3.1), then ϕ is a contractive similitude with contraction

ratio c.

Definition 2.12. Let Φ = {ϕi}i∈I be an iterated function system. Then Φ is a contractive iterated

function system (or CIFS) if ϕi is a contraction mapping for each i ∈ I , and a self-similar iterated

function system (or SSIFS) if ϕi is a contracting similitude for each i ∈ I .

Theorem 2.13 ([Hut81, Thm. 3.1.3]). Let (X, d) be a complete metric space and Φ = {ϕi}i∈I a

CIFS on X . Then there is a unique nonempty compact set A such that

A =

⋃
i∈I

Φ(A ). (2.3.2)

This set A is the attractor (or invariant set) of Φ.

When working with iterated function systems, it is useful to have a language to describe points

or sets that occur as the image of compositions of maps from the system. To this end, adopt the

notation and terminology outlined below.

Definition 2.14. Let I be a finite index set, and denote by I ∗ the collection of all finite tuples (or

words) with entries in I . More precisely,

I
∗ :=

∞⋃
k=0

I
k,

where I 0 := {ι} is the set containing the empty word, and I k is the k-fold Cartesian product of I

with itself.

Definition 2.15. Let {ϕi}i∈I be an iterated function system, let i ∈ I ∗, and let | i | denote the length

of i. Define

ϕi := ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕi|i | .

If the map ϕi is to be composed with itself n times, then simplify the notation by writing

ϕni := ϕi,
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where | i | = n and ik = i for all k = 1,2, . . . ,n.

Remark 2.16. In the study of iterated function systems, the indexing can sometimes become quite

complicated. To limit the complexity, the symbol % is used for the imaginary unit—that is, % ∈ C is

defined to be the principal square root of −1. The symbols i and i are reserved for indexing.

Iterated function systems and their attractors have been well-studied in the literature on fractal

geometry and dimension theory. In his now classic 1981 paper [Hut81], Hutchinson showed that if

{ϕi}i∈I is an SSIFS and there exists an open set U such that

(a) ϕi(U) ⊆ U for all i ∈ I , and

(b) ϕi(U) ∩ ϕ j(U) = � for all i , j,

then the Hausdorff dimension of the attractor of the SSIFS is the unique solution D to the Moran

equation ∑
i∈I

cDi , (2.3.3)

where ci is the contraction ratio of ϕi. The conditions (a) and (b) constitute the open set condition,

which is a kind of separation condition for an IFS.

In the time since Hutchinson codified the concept of an iterated function system, other authors

have generalized his results by weakening the structure of the IFSes considered (e.g., McMullen

[McM84] considers self-affine, rather than self-similar sets), by weakening the separation conditions

(e.g., Lau and Ngai [LN99] obtain results by placing “weak separation” conditions on the monoid

structure of an IFS, and Zerner [Zer96] studies various separation conditions related to the weak

separation of Lau and Ngai), or by considering other notions of dimension (e.g. Mackay [Mac11]

considers the Assouad dimension of certain self-affine sets).

Of particular interest in the current setting is a result of Fraser et al. [FHOR15], who show that

if A is the attractor of a SSIFS which satisfies the open set condition, then

dimH(A ) = dimMi(A ) = dimAs(A ) = D,
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where D is again the unique real solution to the Moran equation (2.3.3). These sets are highly regular,

and provide a useful collection of examples with know properties.

Self-similar measures

Definition 2.17. Let Φ = {ϕi}i∈I be an SSIFS on a complete metric space (X, d) with attractor A .

Further suppose that

ϕi(A ) ∩ ϕ j(A ) = �

whenever i , j. To each map ϕi, associate a probability or weight pi ∈ (0,1) such that

∑
i∈I

pi = 1.

The collection of pairs {(ϕi,pi)}i∈I is a weighted SSIFS. If the context is unambiguous, write

(Φ,p) := {(ϕi,pi)}i∈I ,

where p denotes the set of weights {pi}i∈I .

Theorem 2.18. Let (Φ,p) be a weighted SSIFS indexed by I . Let A denote the attractor of Φ and

suppose that Φ is strongly separated in the sense that

ϕi(A ) ∩ ϕ j(A ) = �

whenever i , j. There is a measure µp supported on A such that

µp(ϕi(A )) = pi :=

|i |∏
k=1

pk . (2.3.4)

This construction parallels that given by [Fal04, §17.3], with proof of Theorem 2.18 following

by the argument outlined in [Fal04, Prop. 1.7]. It is worth noting that this measure is self-similar in
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the sense that

µp(E) =
∑
i∈I

piµp(ϕ−1
i (E))

for any µp-measurable set E . Hence if (Φ,p) is a weighted SSIFS satisfying the hypotheses of

Theorem 2.18, refer to the corresponding measure as a self-similar measure.

Self-similar measures are an example of a broader class of measures called multifractal measures

(or simply multifractals). As is the case with the term “fractal,” the term “multifractal” has no widely

agreed upon definition. However, multifractal measures are generally characterized by their variable

homogeneity—the nature of the scaling relationship between distance and volume can vary radically

from point to point in the space. The inhomogeneity of a multifractal measure can be described in

terms of the scaling behaviour of families of balls with a common center, which corresponds to a

“local” notion of dimension.

Definition 2.19. Let (X, d, µ) be a complete metric measure space. The lower and upper local

dimensions of the measure µ at x ∈ X are

dimlocµ(x) = lim inf
rց0

log(µ(B(x, r)))
log(r)

and

dimlocµ(x) = lim sup
rց0

log(µ(B(x, r)))
log(r) ,

respectively. When dimlocµ(x) = dimlocµ(x), the local dimension of µ at x, denoted dimloc µ(x), is

the common value.

2.4 Mentire functions

The main objects of study in this thesis are fractal zeta functions, which are complex-valued functions

of a single complex variable. These functions often possess “nice” analytic properties, but typically

fail to be entire (that is, they typically fail to be holomorphic on the entire complex plane). Indeed,

it is the poles of these functions which provide information about their associated spaces.
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Many of the examples discussed in the sequel will involve fractal zeta functions which are

meromorphic on C. For brevity, these functions are “mentire” (a contraction of the description

“meromorphic on the entire complex plane”). More formally,

Definition 2.20. A function f : C → C is mentire if it is meromorphic on C.
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Chapter 3

Fractal Zeta Functions

Lapidus et al. develop a theory of zeta functions associated to bounded sets and “relative fractal

drums” in Euclidean space [LRZ̆16]. These zeta functions encode much of the geometry of the

corresponding sets and drums, including notions of dimension and volume. This chapter extends

the basic theory of fractal zeta functions to metric spaces which carry homogeneous measures.

Throughout this chapter, let (X, d, µ) be a metric measure space with complete metric d and

positive Radon measure µ.[1] Assume further that µ is homogenous on X , with

Q = dimAs(X).

3.1 The distance zeta function

This section begins with a definition of the distance zeta function associated to a bounded subset

of X . Initially, the distance zeta function is defined formally by an integral. The main goal of the

remainder of the section is to show that this formal definition “makes sense” and gives a function on

an appropriate domain in C.

[1]Most of the results in this chapter are easily extended from positive Radon measures to signed and complex Radon

measures. The arguments are essentially the same, but involve some technicalities which have the potential to obscure the

main ideas. As such, the discussion is restricted to the positive case.
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Definition 3.1. Let E ⊆ X be bounded. The distance zeta function associated to E is the complex

valued function ζE,Eδ
: U → C defined by the integral

ζE,Eδ
(s) :=

∫
Eδ

d(x,E)s−Q dµ(x), (3.1.1)

where δ > 0, and U ⊆ C is an appropriate domain.

At this point in the exposition, the distance zeta function associated to a bounded set E ⊆ X is

entirely formal, as the meaning of “appropriate domain” is not immediately obvious. Indeed, it is

not even apparent that there is any domain on which the integral (3.1.1) defines a function. Even if

the integral gives rise to a well-defined function for some fixed δ > 0, a different choice of δ may

define a radically different function. The remainder of this section addresses these issues.

Suppose that the integral in (3.1.1) is defined on some domain U. As noted above, “the” distance

zeta function associated to E depends on a choice of δ. Observe that if δ′ > δ > 0, then

ζE,Eδ′ (s) =
∫
Eδ′

d(x,E)s−Q dµ(x)

=

∫
Eδ′rEδ

d(x,E)s−Q dµ(x)
︸                           ︷︷                           ︸

=:ξ(s)

+

∫
Eδ

d(x,E)s−Q dµ(x)

= ξ(s) + ζE,Eδ
(s),

where s ranges over U. If x ∈ Eδ′ r Eδ , then d(x,E) ∈ [δ, δ′). Thus for any fixed s ∈ C, the

integrand is bounded by

��d(x,E)s−Q
�� = d(x,E)ℜ(s)−Q ≤ (max {δ′, δ})ℜ(s)−Q

=: Ceℜ(s), (3.1.2)

where the value of the maximum (and therefore the value of the constant C) depends only on the

sign of the exponent. The inequality (3.1.2) implies that

∫
Eδ′rEδ

��d(x,E)s−Q
�� dµ(x) ≤

∫
Eδ′rEδ

Ceℜ(s) dµ(x) = Ceℜ(s)µ(Eδ′ r Eδ),
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which is finite by the hypothesis that E is bounded and the assumption that balls of finite radius have

finite measure. Standard arguments imply that ξ extends to a function which is holomorphic on C

(see, for example, [Sim15, Thm. 3.1.6]), and so ζE,Eδ′ and ζE,Eδ
differ only by an entire function.

As the ultimate goal is to study the analytic properties of the distance zeta function (e.g. the domain

of holomorphicity, the poles of meromorphic extensions, and so on), the dependence on a choice

of δ is inessential. These remarks are summarized in the following lemma:

Lemma 3.2. Let E be a bounded subset of X . If δ′ > δ > 0, then

ζE,Eδ′ (s) = ξ(s) + ζE,Eδ
(s),

where ξ is an entire function.

Proof. See the preceding discussion. �

Lemma 3.2 permits a simplification of notation. If E ⊆ X is bounded and δ > 0, then the

distance zeta function corresponding to E is

ζE (s) := ζE,Eδ
(s) =

∫
Eδ

d(x,E)s−Q dµ(x).

By a slight abuse of terminology, the distance zeta function ζE (s) is said to converge if and only if

the defining integral converges absolutely (in the sense of Lebesgue).

The next several results describe the regions on which the distance zeta function converges and

diverges, in the sense just introduced. These results, summarized in Remark 3.7 below, make it

possible to give meaning to the phrase “appropriate domain” in Definition 3.1.

The first step is to demonstrate that the integral defining the distance zeta function converges

on an open half-plane bounded in terms of the upper Minkowski dimension of E . This is done in

Lemma 3.3, which establishes an estimate attributed to Harvey and Polking [HP70]. The version

of the estimate given here is a generalization of [LRZ̆16, Lemma 2.1.3], and is proved in a similar

manner.
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Lemma 3.3 (Harvey-Polking Estimate). Let E ⊆ X be bounded and fix δ > 0. If σ < Q−dimMi(E),

then ∫
Eδ

d(x,E)−σ dµ(x) < ∞. (3.1.3)

In particular, this implies that ζE (s) converges for all σ > dimMi(E).

Proof. Under certain additional hypotheses, the desired result follows almost immediately from the

appropriate definitions:

• Suppose that σ ≤ 0. The function x 7→ d(x,E)−σ is continuous on Eδ . If x ∈ Eδ , then

d(x,E) < δ, which implies that d(x,E)−σ ≤ δ−σ . Integrate to obtain the bound

∫
Eδ

d(x,E)−σ dµ(x) ≤
∫
Eδ

δ−σ dµ(x) = δ−σµ(Eδ) < ∞,

and so (3.1.3) holds whenever σ ≤ 0.

• Suppose that µ(E) > 0. Lemma 2.9 implies that Q−dimMi(E) = 0, hence σ < Q−dimMi(E) =

0. The estimate (3.1.3) holds by the previous argument.

Suppose now that σ < 0 and that µ(E) = 0. Since µ(E) = 0 and the integral of any function over a

null set is zero,

∫
Eδ

d(x,E)−σ dµ(x) =
∫
EδrE

d(x,E)−σ dµ(x).

Decompose Eδ r E into dyadic annular neighborhoods: for each j ∈ N, let

Aj := E2− j δ r E2−( j+1)δ =

{
x ∈ X

��� 2−(j+1)δ ≤ d(x,E) < 2−jδ
}

denote an annular neighborhood of E with outer radius 2−jδ and inner radius 2−(j+1)δ. Note that

there is a slight collision of notation here: the subscript j indicates an indexing of the annular
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neighborhoods and not a j-neighborhood of some set A. The set Eδ is the disjoint union

Eδ =

∞⊔
j=0

Aj .

Countable additivity of the measure implies that

∫
EδrE

d(x,E)−σ dµ(x) =
∞∑
j=0

∫
A j

d(x,E)−σ dµ(x)

If x is in Aj , then

2σ jδ−σ < d(x,E)−σ ≤ 2σ(j+1)δ−σ,

since σ > 0. The integrands are therefore bounded on each annular neighborhood, from which

follows the estimate

∞∑
j=0

∫
A j

d(x,E)−σ dµ(x) ≤
∞∑
j=0

∫
A j

2σ(j+1)δ−σ dµ(x)

=

∞∑
j=0

2σ(j+1)δ−σ µ(Aj)

= 2σδ−σ
∞∑
j=0

2σ j µ(Aj).

By assumption, σ < Q − dimMi(E), thus the interval (dimMi(E),Q −σ) is nonempty. Fix some q in

this interval and observe that since q exceeds the upper Minkowski dimension of E , the q-dimensional

upper Minkowski content of E must be zero. More precisely,

M
q(E) = lim sup

tց0

µ(Et )
tQ−q = 0,

and so there is a constant C depending only on δ such that µ(Et ) ≤ CtQ−q for all t ∈ (0, δ]. Take

t = 2−jδ to obtain the estimate

µ(Aj) ≤ µ(E2− j δ) ≤ C
(
2−jδ

)Q−q
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for all j ∈ N, hence

2σδ−σ
∞∑
j=0

2σ jµ(Aj) ≤ C2σδQ−q−σ
∞∑
j=0

(
2σ+q−Q

) j
.

As q < Q − σ, it follows that 2σ+q−Q < 1, and so the geometric series in the last line is absolutely

convergent. Therefore

∫
Eδ

d(x,E)−σ dµ(x) ≤ C2σδQ−q−σ
∞∑
j=0

(
2σ+q−Q

) j
< ∞.

In particular, (3.1.3) holds for all σ < Q − dimMi(E), which is the desired result. �

The Harvey-Polking estimate establishes the important fact that ζE (s) converges whenever s is

a real number which exceeds the upper Minkowski dimension of E , that is,

ζE(s) =
∫
Eδ

d(x,E)s−Q dµ < ∞

for all real s > dimMi(E). The goal now is to show that this lower bound on s is tight, in a sense

made rigorous in Lemma 3.5. Lemma 3.5 is a version of [LRZ̆16, Lemma 2.1.6], restated in the

more general context of metric spaces which carry Radon measures, and proved using identical

techniques. The proof of this lemma relies a techical result, which is recalled in Lemma 3.4.

Lemma 3.4 ([Fol99, Prop. 6.24]). If σ ∈ (0,∞) and f : X → [0,∞] then

∫
X

f σ dµ = σ

∫ ∞

0

t−σ−1µ ({x | f (x) > t}) dt.

Lemma 3.5. Let E ⊆ X be bounded and fix δ > 0. If σ > Q − dimMi(E) then

∫
Eδ

d(x,E)−σ dµ(x) = +∞.
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Proof. Define I : (0,∞) → [0,∞] by

I(r) :=

∫
Er

d(x,E)−σ dµ(x).

The distance function is nonnegative, so if σ is fixed and r ′ > r > 0, then

I(r ′) =
[∫

Er ′rEr

+

∫
Er

]
d(x,E)−σ dµ(x) ≥

∫
Er

d(x,E)−σ dµ(x) = I(r).

The function I is nondecreasing in r. For any r > 0, take f = d(·,E)−1 χEr
in Lemma 3.4 to obtain

I(r) =
∫
Er

d(x,E)−σ dµ(x)

= σ

∫ ∞

0

tσ−1µ
(
{x | d(x,E)−1 > t} ∩ Er

)
dt

= σ

∫ ∞

0

tσ−1µ
(
E1/t ∩ Eδ

)
dt

= σ

∫ 1/r

0

tσ−1µ(Er ) dt + σ

∫ ∞

1/r
tσ−1µ(E1/t) dt

≥ σµ(Er )
∫ 1/r

0

tσ−1 dt

= σµ(Er )
1

σ
tσ

����
1/r

t=0

= r−σµ(Er ). (3.1.4)

By hypothesis, dimMi(E) > Q − σ, and so the interval (Q − σ,dimMi(E)) is nonempty. For any q in

this interval

∞ = Mq(E) = lim sup
tց0

µ(Et )
tQ−q .

By defintion of the lim sup, there is a sequence {tk}∞k=1
with tk ց 0 and

Ck :=
µ(Etk )
t
Q−q
k

→ ∞ as k → ∞.
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With r = tk , the identity (3.1.4) is

I(tk ) ≥ t−σk µ(Etk ) = Ckt
Q−q−σ
k

.

The Ck have been constructed so that limk→∞ Ck = ∞, and q was chosen so that Q − q − σ < 0. As

tk ց 0, it follows that limk→∞ t
Q−q−σ
k

= ∞. If k is large enough that tk < δ, the monotonicity of I

and the inequality (3.1.4) imply that

∫
Eδ

d(x,E)−σ dµ(x) = I(δ) ≥ I(tk ) ≥ Ckt
Q−q−σ
k

.

The rightmost term is unbounded, implying that the integral diverges. �

In short, the integral defining the distance zeta gives a function on the real half-line to the right

of the upper Minkowski dimension of E , and diverges on the complementary half-line. Lemma 3.6,

which is a generalization of [LRZ̆16, Lemma 2.19] to the current setting, extends the half-line of

convergence to half-plane of convergence.

Lemma 3.6. Let E ⊆ X be bounded and fix δ > 0. If ζE (s0) converges (as a Lebesgue integral) for

some s0 ∈ C, then ζE (s) converges for any s ∈ C such that ℜ(s) > ℜ(s0).

Proof. The hypothesis that ζE (s0) converges as a Lebesgue integral may be restated as

∫
Eδ

��d(x,E)s0−Q
�� < ∞.

Assume without loss of generality that δ < 1, an assumption justified by Lemma 3.2. Note that

if a ∈ (0,1), then the real-valued function on R which takes σ to aσ is decreasing. Hence, as

d(x,E) < δ < 1 for any x ∈ Eδ ,

��d(x,E)s−Q
�� = d(x,E)ℜ(s)−Q ≤ d(x,E)ℜ(s0 )−Q

=

��d(x,E)s0−Q
�� .
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Integrating the above inequality gives the bound

∫
Eδ

��d(x,E)s−Q
�� dµ(x) ≤

∫
Eδ

��d(x,E)s0−Q
�� dµ(x) < ∞,

which finishes the proof. �

Remark 3.7. In summary, if ℜ(s) > dimMi(E), then the integral (3.1.1) will converge absolutely.

On this half-plane, this a priori formal integral corresponds to a well-defined function, which gives

a minimimal condition for what could be considered an “appropriate domain” in Definition 3.1.

On the other hand, if ℜ(s) < dimMi(E), this integral diverges. The upper Minkowski dimension

of E marks the boundary of the largest right half-plane on which the distance zeta function may be

explicitly defined as the integral (3.1.1).

Definition 3.8. Let E ⊆ X be bounded and let δ > 0. The abscissa of (absolute) convergence of

the distance zeta function the real value

DC(ζE ) := inf

{
σ ∈ R

����
∫
Eδ

d(x,E)σ−Q dµ(x) < ∞
}

In light of this definition and the preceding remark, DC(ζE ) = dimMi(E).

3.2 The tube zeta function

Note that if E ⊆ X is bounded and t > 0 is fixed, then the value of d(x,E) is constant on the set

{x | d(x,E) = t}.

This suggests that a change of variables will allow the distance zeta function be evaluated over a

real interval, rather than over a complex domain—this is, in essence, the idea of the “shell method”

of integration introduced in elementary calculus classes. The computation is carried out in the

following lemma.
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Lemma 3.9. If E ⊆ X is bounded, then

∫
Eδ

d(x,E)−σ dµ(x) = δ−σµ(Eδ) + σ
∫ δ

0

t−σ−1µ(Et ) dt < ∞ (3.2.1)

for every σ < Q − dimMi(E).

Proof. The Harvey-Polking estimate (Lemma 3.3) ensures that the integral on the left-hand side is

finite, thus it remains to show that the two integrals are equal. The first step of the argument is to

show that ∫
Eδ

d(x,E)−σ dµ(x) =
∫ δ

0

t−σ dV (t), (3.2.2)

where V(t) is the volume of a t-neighborhood of E , that is V(t) = µ(Et ) for all t > 0 and V(0) = µ(E).

To prove the claim, define

T : X → [0,∞) : x 7→ d(x,E)χEδ
(x), and f : R → [0,∞] : t 7→ t−σ .

The generalized change of variables formula (Theorem 2.2) implies that

∫
X

f ◦ T(x) dµ(x) =
∫
[0,∞]

f (t) dT∗µ(t). (3.2.3)

Expand the left-hand side of (3.2.3) to obtain

∫
X

f ◦ T(x) dµ(x) =
∫
X

[
d(x,E)χEδ

(x)
]−σ

dµ(x)

=

∫
Eδ

d(x,E)−σ dµ(x), (3.2.4)

which is precisely the integral on the left-hand side of (3.2.2). Next, observe that

T∗µ([0, t)) = µ
(
T−1

(
[0, t)

) )
= µ

(
{x ∈ X | 0 ≤ d(x,E) < min{t, δ}}

)
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for any t ≥ 0, and so

T∗µ([0, t)) =




µ(E) if t = 0,

µ(Et ) if 0 < t < δ, and

µ(Eδ) if t ≥ δ.

From this presentation, it is apparent that T∗µ([0, t)) is the volume V(t) of the t-neighborhood for

any t between zero and δ. Make the substitution dT∗µ(t) = dV (t) in the right-hand side of (3.2.3) to

get ∫
[0,∞]

f (t) dT∗ =
∫ δ

0

t−σ dV(t). (3.2.5)

With the substitutions given in (3.2.4) and (3.2.5), the identity at (3.2.3) is

∫
Eδ

d(x,E)−σ dµ(x) =
∫ δ

0

t−σ dV (t),

which establishes equality at (3.2.2).

Observe next that for any ε ∈ (0, δ), the functions t 7→ tσ and V are continuous and of bounded

variation. The integration by parts formula gives

∫ δ

ε

t−σ dV (t) = t−σV(t)
���δ
t=ε

−
∫ δ

ε

V (t)
(
−σt−σ−1

)
dt

(see, for example, [Fol99, Thm. 3.36]). Taking the limit as ε decreases to zero gives

∫ δ

0

t−σ dV (t) = lim
εց0

(
t−σV(t)

���δ
t=ε
+ σ

∫ δ

ε

t−σ−1V (t) dt

)
. (3.2.6)

Let q ∈ (dimMi(E),Q − σ) and note that such a choice of q is possible by the assumption that

dimMi(E) < Q − σ. By Defintion 2.7, the set E has zero q-dimensional upper Minkowski content

for any q > dimMi(E), hence

0 = M
q(E) = lim sup

εց0

µ(Eε)
εQ−q = lim sup

εց0

V(ε)
εQ−q .
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There is therefore some constant C > 0 depending only on δ such that V (ε) ≤ CεQ−q for all ε ∈ (0, δ].

After multiplication by a factor of ε−σ, this gives

V(ε)
εσ

< CεQ−q−σ

for all ε ∈ (0, δ]. As q was chosen so that q < Q − σ, it follows that 0 < Q − q − σ and so the

squeeze theorem implies that CεQ−q−σ ց 0 as ε ց 0. Hence

lim
εց0

(
t−σV(t)

���δ
t=ε

)
= δ−σV(δ) − lim

εց0

V (ε)
εσ
= δ−σµ(Eδ).

Therefore (3.2.6) can be rewritten as

∫ δ

0

t−σ dV (t) = lim
εց0

(
t−σV(t)

���δ
t=ε
+ σ

∫ δ

ε

t−σ−1V(t) dt

)

= δ−σµ(Eδ) + lim
εց0

(
σ

∫ δ

ε

t−σ−1µ(Et ) dt

)

= δ−σµ(Eδ) + σ
∫ δ

0

t−σ−1µ(Et ) dt,

where the finiteness of the original integral ensures that the integral in the last line converges to a

finite value. Therefore (3.2.2) becomes

∫
Eδ

d(x,E)−σ dµ(x) =
∫ δ

0

t−σ dV (t) = δ−σµ(Eδ) + σ
∫ δ

0

t−σ−1µ(Et ) dt,

which is the desired result. �

Lemma 3.9 is an analog of [LRZ̆16, Lemma 2.1.4]. The proof techniques used here are based

on the the alternative proof given in that text (see [LRZ̆16, pp. 53–4]). However, that proof relies

on a relation between the Hausdorff and Lebesgue measures on Rd. Here, it is necessary to pass

through the pushforward measure.
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If σ in (3.2.1) is replaced by Q − s, the left hand integral becomes the distance zeta function

(perhaps restricted to a right real half-line). On the right hand side of that identity, the term

δ−σµ(Eδ) = δs−Qµ(Eδ)

extends analytically to an entire function, while the remaining integral term has analytic properties

nearly identical to those of the distance zeta function (the factor of Q − s may, potentially, cancel a

pole of the integral term). This motivates the introduction of the tube zeta function:

Definition 3.10. Let E ⊆ X be bounded. The tube zeta function associated to E is the complex

valued function ζ̃E : U → C defined by the integral

ζ̃E (s) :=

∫ δ

0

ts−Q−1µ(Et ) dt

where δ > 0 and U ⊆ C is an appropriate domain.

Remark 3.11. After replacing −σ with s − Q, the identity (3.2.1) becomes

ζE (s) = δs−Qµ(Eδ) + (Q − s)ζ̃E (s) < ∞

for all real s > dimMi(E).

3.3 Analyticity of the fractal zeta functions

The distance and tube zeta functions are examples of fractal zeta functions. In this section, the

analytic properties of these fractal zeta functions are examined.

Definition 3.12. Let U ⊆ C and suppose that F : U → C. Further suppose that there is some

τ ∈ [−∞,∞) such that F is holomorphic on the right half-plane {ℜ(s) > τ} ⊆ U. The abscissa of

holomorphic continuation of F is the real value

DH (F) := inf
{
σ ∈ R

�� F is holomorphic on {ℜ(s) > σ}
}
.
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Of particular interest will be DH (ζE ), i.e. the abscissa of convergence of the distance zeta function

associated to a bounded subset E of X .

The major result of this section is given in Theorem 3.17, which demonstrates that, under

relatively mild hypotheses on E , the abscissa of convergence DC (ζE ) and the abscissa of holomorphic

continuation DH (ζE ) coincide. The proof of this result depends on several intermediate steps

pertaining to Dirichlet type integrals (or DTIs), which are (roughly) functions of the form

F(s) :=

∫
X

ϕ(x)s dµ(x),

where ϕ is a suitable positive, µ-measurable function on X . The precise defintion and properties of

DTIs are described in [LRZ̆16, App. A].

The following two theorems are technical results regarding the analytic properties of DTIs. The

statements are presented here, but the proofs are omitted. Proofs, as well as more discussion of these

results, can be found in [LRZ̆16].

Lemma 3.13. [LRZ̆16, Thm. 2.1.45] Let ν be a positive Radon measure on X and suppose that

ϕ : (X, ν) → R>0 is a ν-measurable function. Further suppose there is some C > 0 such that

0 ≤ ϕ(x) ≤ C for ν-almost every x ∈ X and that there is some σ ∈ R such that

∫
X

ϕ(x)σ dν(x) < ∞.

Then

F(s) :=

∫
X

ϕ(x)s dν(x)

is holomorphic on the right half-plane {ℜ(s) > σ}, and the derivative of F is given by

F ′(s) =
∫
X

ϕ(x)s log(ϕ(x)) dν(x)

in that region. Moreover,

DH (F) ≤ DC(F).

35



That is, the abscissa of convergence gives an upper bound for the abscissa of holomorphic continu-

ation.

A consequence of this theorem is an analog of [LRZ̆16, Thm. 2.1.11(a)]. Of particular importance

is the observation that the distance zeta function is holomorphic on the open half-plane to the right

of the abscissa of convergence.

Corollary 3.14. Let E ⊆ X be bounded and let δ > 0. The distance zeta function ζE is holomorphic

on the open right half-plane {ℜ(s) > dimMi(E)}, and for all complex numbers s in that region, the

derivative of the distance zeta function is given by

ζ ′E (s) =
∫
Eδ

d(x,E)s−Q log(d(x,E)) dµ(x).

In addition,

DH (ζE ) ≤ DC(ζE ).

Proof. Let ν be the Radon measure on X defined by

dν(x) := d(x,E)−Q dµ(x),

supported on X r E . Define

ϕ(x) := d(x,E),

which is bounded by C = δ on the set Eδ . As per Remark 3.7,

∫
Eδ

ϕ(x)σ dν(x) =
∫
EδrE

d(x,E)σd(x,E)−Q dµ(x) = ζE (σ) < ∞.

The claimed results now follow immediately from Theorem 3.13. �

Corollary 3.15. Let E ⊆ X be bounded and let δ > 0. The distance zeta function ζ̃E is holomorphic

on the open right half-plane {ℜ(s) > dimMi(E)}.
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Proof. Let ν be the Radon measure on R defined by

dν(t) :=
1

tQ+1
µ(Et ) dt,

supported on (0, δ). Define

ϕ(t) = t,

which is bounded by C = δ on the interval (0, δ). It follows from Remark 3.11 that

∫ δ

0

ϕ(t)σ dν(t) =
∫ δ

0

t
1

tQ+1
µ(Et ) dt

= ζ̃E (s) =
1

Q − σ
(
ζE (s) − δσ−Qµ(Eδ)

)
< ∞

for any real σ > dimMi(E). The claimed result again follows from Theorem 3.13. �

Proposition 3.16. Let E ⊆ X be bounded, fix δ > 0, and let U ⊆ C be a connected domain on which

both the distance and tube zeta functions are holomorphic. Further suppose that

U ∩ {ℜ(s) > dimMi(E)} , �.

Then

ζE (s) = δs−Qµ(Eδ) + (Q − s)ζ̃E (s). (3.3.1)

Proof. Without loss of generality, assume that U ⊇ {ℜ(s) > DH (ζE )}. Corollaries 3.14 and 3.15

imply that both ζE and ζ̃E are holomorphic on {ℜ(s) > dimMi(E)}. As per Remark 3.11, the

identity (3.3.1) holds for s ∈ (dimMi(E),∞). Therefore, by the Identity Theorem (see, for example,

[Sim15, Thm. 2.3.8]), the identity holds throughout U. �

Theorem 3.17 is an important statement about the relation between the fractal zeta functions

associated to E , and the geometry of that set—it gives sufficient hypotheses under which the fractal

zeta functions will be singular at, and therefore “detect”, the dimension of E . This theorem and its

proof closely parallel [LRZ̆16, Theorem 2.1.11(c)].
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Theorem 3.17. Let E ⊆ X be bounded, let δ > 0, and suppose that the Minkowski dimension of E

exists. Further suppose that

D := dimMi(E) < Q

and thatMD(E) > 0. Then

lim
σցD

ζE (σ) = +∞,

where σ ∈ R. Under these hypotheses, D is a singularity of ζE , and so DH (ζE ) = DC(ζE ).

Proof. From the definition of the lower Minkowski content (Definition 2.7),

0 < MD(E) = lim inf
tց0

µ(Et )
tQ−D ,

from which it follows that for some sufficiently small δ, there exists a constant C > 0 such that

µ(Et )
tQ−D > C =⇒ µ(Et ) > CtQ−D (3.3.2)

whenever t < δ. Then

lim
σցD

ζE (σ) = lim
σցD

[
δσ−Qµ(Eδ) + (Q − σ)ζ̃E (σ)

]
(by Prop. 3.16)

≥ lim
σցD

[
(Q − σ)

∫ δ

0

tσ−Q−1µ(Et ) dt

]

≥ lim
σցD

[
(Q − σ)

∫ δ

0

tσ−Q−1 · CtQ−D dt

]
(by (3.3.2))

= C lim
σցD

[
(Q − σ) tσ−D

σ − D

]

= +∞.

Hence ζE has a singularity at D, which implies that DH (ζE ) ≥ DC(ζE ). It then follows from

Corollary 3.14 that

DH (ζE ) = DC(ζE ),

which is the desired result. �
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Theorem 3.17 demonstrates that, under relatively mild hypotheses, the distance zeta function

associated to a bounded set E will have a singularity at the real point corresponding to the upper

Minkowski dimension of E . In this sense, the singularity of the distance zeta function is “a dimension”

of E . By extension, every pole of an appropriately extended zeta function may be regarded as a

complex valued dimension of the underlying set E . This is made formal in Definition 3.19, following

the introduction of of some notation.

Definition 3.18. Let f : U → C be a meromorphic function defined on some open domain U ⊆ C.

The set of visible poles of f (relative to U) defined to be

PU ( f ) := {ω ∈ U | ω is a pole of f }.

Additionally, denote the collection of all poles of f by

P( f ) := {ω ∈ C | ω ∈ PU ( f ) for some U}.

Definition 3.19. Suppose that E ⊆ X is a bounded set such that ζE admits a meromorphic extension

to some open domain U containing the critical line {ℜ(s) = DC(ζE )}. The sets

PU (ζE ) and P(ζE )

are the visible complex dimensions of E relative to U, and the complex dimensions of E , respectively.

3.4 Relative fractal drums

In the computation of the complex dimensions of the Sierpinski carpet in Example 1.1, one of the

key observations is that several open squares are removed from the closed unit square at each stage

of the construction and that each of these removed squares contributes to the distance zeta function

in the same way, modulo a scaling factor. The main results of this section formalize this construction

and computational technique.
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Definition 3.20. LetΩ ⊆ X be an open set such that µ(Ω) < ∞, and let E ⊆ X be arbitrary. Suppose

that there is some δ > 0 such that Ω ⊆ Eδ . The pair (E,Ω) is called a relative fractal drum (or RFD).

Given an RFD (E,Ω), associate to it a relative distance zeta function

ζE,Ω(s) :=

∫
Ω

d(x,E)s−Q dµ(x), (3.4.1)

and a relative tube zeta function

ζ̃E,Ω(s) :=

∫ δ

0

ts−Q−1µ(Et ∩ Ω) dt. (3.4.2)

As suggested by the notation in Definition 3.1, if Ω is taken to be a δ-neighborhood of E , then

ζE,Eδ
= ζE and ζ̃E,Eδ

= ζ̃E .

Hence the distance and tube zeta functions can be viewed as special cases of relative distance and

relative tube zeta functions, respectively.

As in the case of the zeta functions associated to bounded subsets of X , the integrals (3.4.1)

and (3.4.2) generally only define analytic functions on an open right half-plane. The analysis is

similar to that presented in Section 3.3, above. The basic definitions and results are outlined below.

Definition 3.21. Let (E,Ω) be an RFD in X , and let q ∈ R—note that negative values of q are

permissible. The relative lower and upper q-dimensional Minkowski contents of (E,Ω) are given by

Mq(E,Ω) := lim inf
tց0

µ(Et ∩ Ω)
tQ−q and M

q(E,Ω) := lim sup
tց0

µ(Et ∩ Ω)
tQ−q ,

respectively.
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Definition 3.22. Let (E,Ω) be an RFD in X . The relative lower and upper Minkowski dimensions

of (E,Ω) are given by

dimMi(E,Ω) := inf{q ∈ R | Mq(E,Ω) = 0}

= sup{q ∈ R | Mq(E,Ω) = +∞},

and

dimMi(E,Ω) := inf{q ∈ R | Mq(E,Ω) = 0}

= sup{q ∈ R | Mq(E,Ω) = +∞},

respectively. If both the relative lower and upper Minkowski dimensions are equal, then the common

value is the relative Minkowski dimension of (E,Ω), denoted by dimMi(E,Ω).

Example 3.23. If E is bounded, and δ > 0, then (for example)

M
q(E,Eδ) = lim sup

tց0

µ(Et ∩ Eδ)
tQ−q = lim sup

tց0

µ(Et )
tQ−q = M

q(E),

where the second equality follows from noting that t is eventually smaller than δ. Hence relative

Minkowski contents (and Minkowski dimensions) generalize the usual Minkowski contents (and

dimensions, resp.) of bounded subsets of X . ⊳

Example 3.24. Let (E,Ω) be an RFD in X , and suppose that d(E,Ω) = ε > 0. Then for any q ∈ R,

M
r (E,Ω) = lim sup

tց0

µ(Et ∩ Ω)
tQ−q = lim sup

tց0

µ(�)
tQ−q = 0,

where the second equality follows from the observation that t is eventually smaller than ε. It then

follows that

dimMi(E,Ω) = inf
{
q ∈ R

���Mq(E,Ω) = 0
}
= −∞.
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Thus, in contrast to the usual Minkowski dimensions, the relative Minkowski dimensions may take

on negative values. ⊳

Definition 3.25. Let (E,Ω) be an RFD in X . Let

DC(ζE,Ω) := inf

{
s0 ∈ R

����
∫
Ω

��d(x,E)s−Q
�� dµ(x) < ∞ whenever ℜ(s) > s0

}
.

That is, DC(ζE,Ω) denotes the abscissa of (absolute) convergence of the relative zeta function ζE,Ω

(where this function is a Dirichlet-type integral).

Lemma 3.26. Let (E,Ω) be an RFD in X . Then the integral defining the relative distance zeta

function will converge on the open half-plane {ℜ(s) > dimMi(E,Ω)} and

DC(ζE,Ω) = dimMi(E,Ω).

Remark 3.27. Lemma 3.26 follows from an argument that is nearly identical to that used to establish

the Harvey-Polking estimate in Lemma 3.3. As no new techniques are required here, the proof is

omitted.

Theorem 3.28. Let (E,Ω) be an RFD in X . On the open half-plane {ℜ(s) > dimMi(E,Ω)}, the

relative distance and tube zeta functions satisfy the functional equation

ζE,Eδ∩Ω(s) = δs−Qµ(Eδ ∩ Ω) + (Q − s)ζ̃E,Ω(s).

Proof. By Theorem 3.26, the integral defining the relative distance tube zeta function converges

on the half-plane {ℜ(s) > dimMi(E,Ω)}. The remainder of the proof proceeds as in the proof of

Lemma 3.9, replacing the measure µ with µ|Ω, the restriction of µ to Ω. �

Theorem 3.29. Let (E,Ω) be an RFD in X , suppose that D := dimMi(E,Ω) < Q exists, and

M
D(E,Ω) > 0. Then the relative distance zeta function will be holomorphic on the half-plane
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{ℜ(s) > dimMi(E,Ω) and singular at D. In this case,

DH (ζE,Ω) = DC(ζE,Ω),

where DH is as in Defintion 3.12.

Remark 3.30. The proof of Theorem 3.29 is nearly identical that of Theorem 3.17. As such, the

proof is omitted.

Definition 3.31. Suppose that (E,Ω) is an RFD such that ζE,Ω admits a meromorphic extension to

some open domain U containing the critical line {ℜ(s) = DC(ζE,Ω)}. The sets

PU (ζE,Ω) and P(ζE,Ω)

are called the visible complex dimensions of the RFD (E,Ω) relative to U, and the complex dimensions

of the the RFD (E,Ω), respectively.

“Reasonable” notions of dimension defined for “reasonable” spaces are invariant with respect to

similitudes (and, more generally, with respect to Lipschitz maps). As a rough example, if E ⊆ Rd

and ϕ is a similitude on Rd, then dim(ϕ(E)) = dim(E), where dim is one of many common notions

of dimension (e.g. the Hausdorff, Minkowski, or Assouad dimension). The complex dimensions of

a relative fractal drum satisfy this “reasonableness” criterion, as outlined by the following theorem.

Theorem 3.32. Let (E,Ω) be an RFD in X . Suppose that ϕ : X → X is a similitude with ratio λ,

i.e.

d(ϕ(x), ϕ(y)) = λd(x, y)

for all x, y ∈ X . Further suppose that

µ(ϕ(A)) = λQµ(A)

for all µ-measurable sets A (for example, similarity maps on Rd with Lebesgue measure). Then
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(a) ζϕ(E),ϕ(Ω)(s) = λsζE,Ω(s) for all ℜ(s) > dimMi(E,Ω), and

(b) P(ζϕ(E),ϕ(Ω)) =P(ζE,Ω).

Proof. Observe that for any measurable set E ⊆ X ,

(
ϕ−1

)
∗(µ)(E) = µ

(
(ϕ−1)−1(E)

)
= µ (ϕ(E)) = λQµ(E), (3.4.3)

where the second equality follows from the fact that similarities are bijective. Applying the general

change of variables formula (2.1.1),

ζϕ(E),ϕ(Ω)(s) =
∫
ϕ(Ω)

d(x, ϕ(E))s−Q dµ(x)

=

∫
Ω

d(ϕ(y), ϕ(E))s−Q d
(
ϕ−1

)
∗
(µ)(y)

=

∫
Ω

d(ϕ(y), ϕ(E))s−Q d
(
λQµ

)
(y) (by (3.4.3))

=

∫
Ω

λs−Qd(y,E)s−QλQ dµ(y) (scaling property of ϕ)

= λs
∫
Ω

d(y,E)s−Q dµ(y)

= λsζE,Ω(s),

where the last integral converges for allℜ(s) > dimMi(E,Ω). This establishes part (a) of the theorem.

Part (b) then follows from from part (a) and the Identity Theorem for holomorphic functions. �

The main application of relative fractal drums in this thesis is in the computation of fractal zeta

functions. The idea is to decompose a δ-neighborhood of a set E into a collection of RFDs, compute

the relative zeta function corresponding to each such RFD, then “glue” everything back together

again. This is made precise via the following definition and theorem, which are slightly generalized

versions of [LRZ̆16, Defn. 4.1.43 & Thm. 4.1.44].

Definition 3.33. Let (Ej,Ω j) be a countable (finite or countably infinite) collection of RFDs in X

such that

Ω j ∩ Ωk = �
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for all j , k and

µ

(⋃
j

Ω j

)
< ∞.

Then the union of the family of RFDs (Ej,Ω j) is the RFD (E,Ω), where

E =
⋃
j

Ej and Ω =
⋃
j

Ω j .

Let ⋃
j

(Ej,Ω j) := (E,Ω)

denote this union of RFDs.

Theorem 3.34. Let (Ej,Ω j) be a countable collection of RFDs satisfying the conditions of Defini-

tion 3.33, and let

(E,Ω) =
⋃
j

(Ej,Ω j).

Further suppose that if x ∈ Ω j for some j, then

d(x,E) = d(x,Ej )

Then

ζE,Ω(s) =
∑
j

ζE j ,Ω j
(s)

for any s ∈ C with ℜ(s) > dimMi(E,Ω).

45



Proof. The proof follows along the same lines as that of [LRZ̆16, Thm. 4.1.44]. If ℜ(s) >

dimMi(E,Ω), then the integral defining ζE,Ω converges. For such s,

ζE,Ω(s) =
∫
Ω

d(x,E)s−Q dµ(x)

=

∑
j

∫
Ω j

d(x,E)s−Q dµ(x) (the Ω j are disjoint)

=

∑
j

∫
Ω j

d(x,Ej )s−Q dµ(x) (x ∈ Ω j =⇒ d(x,Ω) = d(x,Ω j))

=

∑
j

ζE j ,Ω j
(s).

There is a small subtlety elided by this computation: it is not immediately clear that the integrals

∫
Ω j

d(x,Ej )s−Q dµ(x)

converge for all s with ℜ(s) > dimMi(E,Ω). However, if σ is real (in particular, if σ > dim(E,Ω)),

then d(x,Ej )σ−Q is nonnegative, and so

∫
Ω j

d(x,Ej )σ−Q dµ(x) ≤
∑
j

∫
Ω j

d(x,Ej )σ−Q dµ(x) = ζE,Ω(σ).

Hence for real σ > dimMi(E,Ω), all of the relevant integrals converge. By an argument similar to

that in Lemma 3.6, each one of these integrals converges on the half-plane {ℜ(s) > dimMi(E,Ω)},

as required. �
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Chapter 4

Examples in p-adic Settings

4.1 The p-adic numbers

In this section, two standard constructions of the p-adic numbers are given: one from an analytic

point of view, where the p-adic numbers are seen as a completion of the rationals with respect to the

p-adic absolute value; and a second from an algebraic point of view, where the p-adic numbers are

built from the projective limit of the rings Z/pnZ. The constructions are equivalent, but the distinct

points of view make certain properties more readily apparent.

An analytic construction of Qp

The construction in this subsection parallels the construction presented by Gouvêa [Gou13, Ch. 3].

Definition 4.1. Let k be an arbitrary commutative ring with identity and o an arbitrary ordered field.

Define the nonnegative part of o by o+ := {x ∈ o | x ≥ 0o}, where 0o is the additive identity element

of o. An absolute value on k is a function

| · | : k → o+

which satisfies the following three axioms:

(A1) |x | = 0o if and only if x = 0o (i.e. | · | is definite);
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(A2) |xy | = |x | |y | for all x, y ∈ k; and

(A3) |x + y | ≤ |x | + |y | for all x, y ∈ k (i.e. | · | satisfies the triangle inequality).

The absolute value | · | is said to be non-archimedean if it satisfies a stronger version of (A3), namely

the axiom

(A4) |x + y | ≤ max{|x |, |y |} for all x, y ∈ k (i.e. | · | satisfies the ultrametric inequality).

Otherwise, | · | is said to be archimedean.

Definition 4.2. Let p be a fixed prime number. Define a function vp : Q → Z by vp(x) := n, where

n is the unique integer such that x can be written as

x = pvp(x)
a

b

with a, b ∈ Z and p ∤ a, b. The function vp is called the p-adic valuation on Q.

Lemma 4.3 (see [Gou13, Prop. 2.1.5]). The map | · |p : Q → R+ defined by |x |p = p−vp(x) is a

non-archimedean absolute value on Q. This absolute value is called the p-adic absolute value on Q.

The p-adic absolute value induces a metric on Q, defined by dp(x, y) := |x − y |p. This metric in

turn defines a topology, making Q into a metric space—indeed, an “ultrametric space,” i.e. a metric

space in which axiom (A4) is satisfied by the metric. However, Q is not complete with respect to

any such metric. Thus the next goal is to complete Q in the usual manner, as outlined below for the

sake of completeness.

Lemma 4.4 (see [Gou13, Prop. 3.2.5]). Let Cp denote the collection of all sequences in Q that are

Cauchy with respect to | · |p. With the operations

(xn) + (yn) := (xn + yn), and (xn) · (yn) := (xnyn),

the set Cp is a commutative ring with identity.
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Lemma 4.5 (see [Gou13, Lemma 3.2.8]). Let Np denote the null sequences in Cp. That is,

Np :=
{
(xn) ∈ Cp

��� lim
n→∞

|xn |p = 0
}
.

Then Np is a maximal ideal in Cp.

Definition 4.6. The field of p-adic numbers, denoted Qp is given by

Qp := Cp/Np.

Given x ∈ Q, the constant sequence (x) := (x, x, . . . ) ∈ Cp. Thus the map x 7→ (x) is an

inclusion of Q into Cp. Since two distinct constant sequences differ by a nonzero constant sequence,

this inclusion passes to the quotient. That is, there is an inclusion Q →֒ Qp via the map sending

x ∈ Q to the constant sequence (x). This, combined with the following rather striking lemma,

provides a way of uniquely extending the p-adic absolute value to Qp.

Lemma 4.7 (see [Gou13, Lemma 3.2.10]). Let (xn) ∈ Cp rNp. Then there is some N ∈ N such

that |xm |p = |xn |p for all m,n ≥ N . That is, the sequence (|xn |p) is eventually stationary.

This implies that if (xn) ∈ Qp, then limn→∞ |xn |p must be a finite real number. The p-adic

absolute value on Q can be extended to an absolute value on Qp in a straightforward manner.

Definition 4.8. If x ∈ Qp and (xn) is any Cauchy sequence in the equivalence class of x, define the

p-adic absolute value on Qp by

|x |p := lim
n→∞

|xn |p .

It can be verified that this definition does not depend on representatives, and gives a non-

archimedean absolute value on Qp that is consistent with the p-adic absolute value on Q—that is,

|x |p = |(x)|p for all x ∈ Q. Finally, Qp is Cauchy complete with respect to the p-adic absolute value,

and the embedded image of Q is dense in Qp. Hence Qp is the completion of Q with respect to the

p-adic absolute value. This is made formal by Theorem 4.9.
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Theorem 4.9 (see [Gou13, Prop. 3.2.13]). Suppose that k is a field with an associated non-

archimedean absolute value | · |. Further suppose that

(a) there exists an inclusion ι : Q →֒ k such that |ι(x)| = |x |p for all x ∈ Q;

(b) the set ι(Q) is dense in k (with respect to the topology induced by | · |); and

(c) k is complete with respect to | · |.

Then there is a unique isomorphism ψ such that the diagram

k

| · |

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

ψ

��

Q
)
	

66♥♥♥♥♥♥♥♥♥♥♥♥♥♥
� u

''PP
PP

PP
PP

PP
PP

P R+

Qp

| · |p

66♥♥♥♥♥♥♥♥♥♥♥♥♥

commutes.

An algebraic construction of Qp

This subsection follows the presentations of Robert [Rob13, Ch. 1] and Serre [Ser12, Ch. II].

Definition 4.10. Let p be a fixed prime number. For each j, k ∈ N with j ≤ k, let

πkj : Z/pkZ → Z/pjZ

be the natural projection map (i.e. πk
j
(a) = a (mod pj )). The p-adic integers are the set

Zp :=

{
(a1,a2, . . .) ∈

∞∏
n=1

Z/pnZ

����� πkj (ak) = aj∀ j, k ∈ N

}
.
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Observe that if (an) ∈ Zp, then the requirement that πk
k−1

(ak) = ak−1 implies that ak =

ak−1 + αkpk−1 for some αk ∈ {0,1, . . . , p − 1}. Thus an element of Zp can be written as

(an) =
(
α1, α1 + α2p, α1 + α2p + α3p2, . . . ,

n∑
k=1

αkpk−1, . . .

)

where αk ∈ {0,1, . . . , p−1} for each k ∈ N. Hence if (an) ∈ Zp, it has a unique series representation

of the form

(an) =
∞∑
k=1

αkpk−1, where αk ∈ {0,1, . . . , p − 1} for all k. (4.1.1)

Therefore the elements of Zp may be viewed either as sequences of integers modulo powers of p that

are compatible with the natural projection maps, or as formal power series in p with coefficients in

the set {0,1, . . . , p − 1}. In the following discussion, whichever representation makes the exposition

more transparent will be used.

If a ∈ Z, then the map a 7→ (a (mod pn)) gives a natural inclusion Z →֒ Zp. Via this

inclusion, Z is reasonably viewed as a subset of Zp (specifically, the subset of Zp possessing series

representations with only finitely many nonzero terms; or the subset of Zp having an eventually

constant sequence representation).

While Zp is a priori constructed only as a set, it has a natural ring structure, with addition and

multiplication performed termwise with respect to the sequence representation. That is, if (an), (bn)

are sequences in Zp, then

(an) + (bn) := (an + bn) and (an) · (bn) := (an · bn),

where the termwise addition and multiplication take place in the rings Z/pnZ.

Theorem 4.11. The ring of p-adic integers is a principal ideal domain. Moreover, every ideal

in Zp is of the form pnZp for some n ∈ N ∪ {∞} (where, in order to simplify notation„ define

p∞Zp = {0}).
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The next task is to topologize Zp. For each k ∈ N take ϕk : Zp → Z/pkZ to be the projection

homomorphism given by

ϕk ((a1,a2,a3, . . . )) = ak .

A basis for a topology on Zp is given by sets of the form ϕ−1
k
(a), where k ∈ N and a ∈ Z/pkZ. The

topology generated by this basis is called the profinite topology. It is worth noting that the ideals in

Zp are the basis open sets ϕ−1
k
(1).

Theorem 4.12. The ring of p-adic integers under the profinite topology is compact, Hausdorff, and

totally disconnected. Moreover, the image of Z (via the natural inclusion) is dense in Zp.

Definition 4.13. Let a ∈ Zp, and let n be the unique positive integer (or ∞) such that 〈a〉, the ideal

generated by a, is pnZp. Define a map | · |Zp
: Zp → R+ by setting

|a |Zp
:= p−n.

Proposition 4.14. The map | · |Zp
is a non-archimedean absolute value on Zp.

Not only is | · |Zp
a non-archimedean absolute value on Zp, it agrees with the restriction of the

p-adic absolute value to Z. That is, the diagram

Z
� _

��

| · |p

!!❇
❇
❇
❇
❇
❇
❇
❇

Zp | · |Zp

// R+

commutes. Moreover, the absolute value on Zp is complete (in the sense that the induced metric is

Cauchy complete).
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As the p-adic integers are a principle ideal domain, they possess an associated field of fractions.

Let Ẑp denote this field of fractions. There is a unique inclusion ι : Q →֒ Ẑp such that the diagram

Z
� � //

� _

��

Q
� _

ι

��

Zp
� � // Ẑp

commutes, where the horizontal maps are the canonical embeddings of the respective rings into their

associated fields of fractions, and the map on the left is the natural embedding of Z into Zp. A basis

for a topology on Ẑp is given by sets of the form a + pnZp, where a ∈ ι(Q) and n ∈ Z.

Theorem 4.15. Under the above defined topology, Ẑp is a locally compact topological field. The

ring of p-adic integers, Zp, is its maximal compact subring.

By construction, the basis is countable. Moreover, for any a ∈ ι(Q) and n ∈ Z,

a + pn−1Zp = a + pnZp ⊔
p−1⊔
k=1

b1,k + pnZp

for some points b1,k ∈ ι(Q). Similarly, for any j ∈ N, it is possible to write a+pn−jZp as the disjoint

union of p sets of the form bj,k + pn−j+1Zp (where b0, j = a). Hence, by a recursive construction,

Ẑp r a + pnZp =

∞⊔
j=1

p−1⊔
k=1

bj,k + pn−j+1Zp.

But this is a countable union of open sets, and is therefore open. Therefore the basis open sets are

also closed. It follows that Ẑp is regular, and so by Urysohn’s lemma, the space Ẑp is metrizable.

Rather than directly constructing a metric, construct an absolute value on Ẑp which induces a

metric. To wit, define ���a
b

���
Ẑp

:=
|a |Zp

|b|Zp

.
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This map extends the absolute value on Zp to a non-archimedean absolute value on Ẑp. Indeed, it

follows from axiom A2 that this is the only possible extension. Then the diagram

Z
� � //
� _

��

Q
� _

ι

��

| · |p
((◗◗

◗◗
◗◗

◗◗

R+

Zp
� � // Ẑp

| · |
Ẑp

77♥♥♥♥♥♥♥♥

commutes. Observe that balls of the form

B(x, r) =
{
y ∈ Ẑp

��� |x − y | < r
}

are precisely the basis open sets for the topology on Ẑp. Indeed, Zp is exactly the unit ball in Qp.

To summarize, Ẑp is a topological field with a non-archimedean absolute value | · |
Ẑp

. The

rational numbers embed into Ẑp as a dense subset, and the absolute value in Ẑp agrees with the

p-adic absolute value on the image of Q. This section concludes with a final result:

Lemma 4.16. The field Ẑp is complete with respect to | · |
Ẑp

.

By invoking theorem 4.9, (
Ẑp, | · |Ẑp

)
�

(
Qp, | · |p

)
,

where the isomorphism is uniquely determined. It is therefore reasonable to say that Ẑp is Qp, and

to view elements of Qp in light of either the analytic construction of the previous subsection, or the

algebraic construction of the current subsection.

Key properties of Qp

To fix notation, the space (Qp, dp) will denote the p-adic numbers taken together with the metric dp ,

which is the metric induced by the p-adic absolute value. That is,

dp(x, y) := |x − y |p
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for any x, y ∈ Qp.

In R, open and closed intervals play a vital role analysis. The natural analog of an interval in Qp

is a ball. However, all balls in Qp are clopen, thus open and closed balls don’t quite play the same

role as open and closed intervals, respectively. Instead, the appropriate analogs are stripped and

dressed balls.

Definition 4.17. Let x ∈ Qp and r > 0. The stripped ball of radius r centered at x is the set

B<(x, r) :=
{
y ∈ Qp

�� dp(x, y) < r
}
,

and the dressed ball of radius r centered at x is the set

B≤(x, r) :=
{
y ∈ Qp

�� dp(x, y) ≤ r
}
.

Stripped and dressed balls generally play the role in Qp that is played by open and closed intervals

in R.

The following theorem states several of the key properties of the p-adic numbers. The somewhat

idiosyncratic descriptions of these properties are inspired by Gouvêa [Gou13].

Theorem 4.18. Let x, y, z ∈ Qp be arbitrary, and fix r, s > 0.

(a) (The biggest wins.) If |x |p , |y |p then

|x + y |p = max{|x |p, |y |p}.

(b) (All triangles are isosceles.) At least two of

dp(x, y), dp(x, z), and dp(y, z)

are equal.
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(c) (Every point is the center.) If a ∈ B≤(x, r), then B≤(a, r) = B≤(x, r). The same result holds

for the stripped ball.

(d) (Venn diagrams are boring.) If B≤(x, r) ∩ B≤(y, s) , �, then either

B≤(x, r) ⊆ B≤(y, s) or B≤(y, s) ⊆ B≤(x, r).

The same result holds for the stripped balls.

It follows from Theorem 4.18 that a ball of radius pn in Qp is the disjoint union of p balls of

radius pn−1. Specifically, if x ∈ Qp, n ∈ Z, and b ∈ {0,1, . . . , p − 1}, then

B≤(x, pn) =
p−1⊔
b=0

B≤(x + b, pn−1). (4.1.2)

Because the notation will be convenient later, define

pE + b := {px + b : x ∈ E},

where E ⊆ Qp and b ∈ {0,1, . . . , p − 1}. In this notation, (4.1.2) can be rewritten as

B≤(x, pn) =
p−1⊔
b=0

pB≤(x, pn) + b.

For example, in Q7, the dressed unit ball Z7 can be understood as in Figure 4.1. Note that in this

setting multiplication by p is contractive. Indeed, multiplication by p is a contracting similitude with

dp(px, py) = p−1dp(x, y)

for all x, y ∈ Qp.
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7Z7 7Z7 + 1

7Z7 + 3

7Z7 + 4

7Z7 + 5 7Z7 + 6

Figure 4.1: A diagram of the 7-adic integers. The unit ball, Z7, is composed of seven disjoint balls

of radius 1
7

(namely, 7Z7 + j for j ∈ {0,1, . . . ,6}). Each of these is, in turn, composed of seven

disjoint balls of radius 1
49

, and so on.

The p-adic numbers are endowed with a natural Haar measure µp, which is normalized so that

the p-adic integers have measure 1. Under this normalization,

µp(B(x, p−k)) = p−k

for any x ∈ Qp and k ∈ Z.

Proposition 4.19. For any prime number p,

dimAs(Qp) = 1.

Proof. Fix 0 < ρ < r and let x ∈ Qp be arbitrary. Let κ, k ∈ Z be the uniqe integers such that

p−κ ≤ ρ < p−(κ−1) and p−(k+1) < r ≤ p−k .

Then

B(x, r) = B(x, p−k) and B(ξ, ρ) = B(ξ, p−(κ−1)) ⊇ B(ξ, p−κ)
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for any ξ ∈ B(x, r). For any such ξ, it then follows that

µp(B(x, r))
µp(B(ξ, ρ))

=

µp(B(x, p−k))
µp(ξ, p−(κ−1)) =

p−k

p−(κ−1) = p

(
p−k

p−κ

)
≤ p

(
r

ρ

)1

.

Therefore µp is 1-homogeneous on Qp. Fix some q ∈ [0,1), and suppose for contradiction that µp

is q-homogeneous on Qp. That is, suppose that there is some M > 0 such that

µp(B(x, r))
rq

≤ M

(
µp(B(ξ, ρ))

ρq

)q

for all 0 < ρ < r, all x ∈ Qp, and all ξ ∈ B(x, r). With r = p−k and ρ = p−κ for some κ > k ∈ Z,

this implies that

p−k

p−κ
≤ M

(
p−k

p−κ

)q
⇐⇒ p(1−q)(κ−k) ≤ M

for all κ > k ∈ Z. But p(1−q)(κ−k) can be made arbitrarily large by taking κ to be enough larger

than k. Hence no such M can exist, contradicting the assumption that µp is q-homogeneous for

some q ∈ [0,1). Therefore

dimAs(Qp) = inf{q | µp is q-homogeneous on Qp} = 1,

which is the claimed result. �

Vector spaces over Qp

Let p be a fixed prime number and Q ∈ N, and let Q
Q
p denote the Q-dimensional vector space

over Qp For any α ∈ [1,∞), define a metric on the product space by setting

dαp (x, y) :=

(
N∑
k=1

|xk − yk |α
)1/α

.

The L∞-metric (or the max-metric) is defined by

d∞
p (x, y) := max

k≤N
{|xk − yk |} .
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Note that for any α, β ∈ [1,∞], the metrics dαp and d
β
p induce the same topology, and are therefore

equivalent as metrics. However, only the d∞
p -metric possesses the non-archimedean property, and

may, in some sense, be regarded as the natural metric on Q
Q
p . In light of this, write

dp := d∞
p .

Such vector spaces over Qp, endowed with the natural product measure, are homogeneous and

satisfy

dimAs(QQ
p ) = Q.

4.2 Examples in Qp

Singleton sets in Qp

This section begins with a computation of the complex dimensions of a singleton set inQp, whereQp

is equipped with its natural Haar measure µp, normalized so that µp(Zp) = 1.

Example 4.20. It follows from the translation invariance of the measure on Qp that any singleton set

will have the same complex dimensions as any other singleton set. Thus for notationally simplicity,

it suffices to compute the complex dimensions of the singleton set {0}. Then, for s with sufficiently

large real part,

ζ{0}(s) =
∫
Zp

d(x,0)s−1 dµp(x)

=

∞∑
n=0

∫
pnZprpn+1Zp

p−n(s−1) dµp(x)

=

∞∑
n=0

pn(1−s)
[
p−n − p−n−1

]

=

p − 1

p

∑
n=0

(
1

ps

)n

=

p − 1

p

ps

ps − 1
.
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Hence ζ{0} can be extended to a mentire function with simple poles occurring whenever ps = 1.

That is

P(ζ{0}) = 0 + %
2πZ

log(p) .

This example demonstrates the somewhat surprising result that singleton sets inQp possess geometric

oscillation. This kind of highly localized oscillatory behaviour is explored in greater detail in

Chapter 5. ⊳

For comparison, the corresponding computation in R exhibits markedly different behaviour.

Let m denote the usual Lebesgue measure. This measure is translation invariant, thus ζ{x } = ζ{0}

for any x ∈ R. The distance zeta function corresponding to a singleton point in R is

ζ{0}(s) =
∫
(−1,1)

d(x,0)s−1 dm(x) = 2

∫ 1

0

xs−1 dx =
2

s
.

This zeta function can be extended to a mentire function which possesses a simple pole at s = 0 (and

no other poles or singularities). In contrast to points in Qp, points in R do not exhibit oscillatory

geometric behaviour.

Balls in Qp

Example 4.21. Any ball in Qp may be sent to the unit ball Zp via a similarity, and µp is measure

scaling in the sense of Theorem 3.32. Hence

ζB≤(x,r) = kζZp

for any x ∈ Qp and any r > 0, where k is a constant depending only on r. With δ < 1, the a

δ-neighborhood of Zp is simply Zp, and so

ζZp
(s) =

∫
Zp

d(x,Zp)s−1 dµp(x) =
∫
Zp

0s−1 dµp(x) = 0
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for all s > 1. This extends analytically to the zero function on C, hence the unit ball Zp has no

complex dimensions. In particular, note that dimMi(Zp) = 1 is not a complex dimension of Zp.

This is not surprising, as Zp fails to satisfy the hypotheses of Theorem 3.17—specifically,

dimMi(Zp) = 1 ≮ 1 = dimAs(Qp).

From the point of view of the fractal zeta functions, the unit ball inQp has little observable geometric

structure. ⊳

By contrast, the distance zeta function does see some of the geometry of the unit ball (the interval

(−1,1)) in R. With δ < 1 and s chosen with sufficiently large real part, this zeta function is given by

ζ(−1,1)(s) =
∫ 1+δ

−1−δ
d(x,0)s−1 dm(x) = 2

∫ 1+δ

1

xs−1 dx =
2(1 + δ)2

s
+

2

s
.

This can be extended to a mentire function with a simple pole at s = 0. The zeta function fails to

detect the Minkowski dimension of the interval, though this is again unsurprising, as the interval fails

to satisfy the hypotheses of Theorem 3.17. However, in this real case, the distance zeta function still

sees some geometry—the pole at zero corresponds to the zero dimensional boundary (the points ±1)

of the interval.

A self-similar measure on Z2

Example 4.22. Let {ϕi : Q2 → Q2}1
i=0

be the IFS with maps

ϕ0(x) = 2x and ϕ1(x) = 2x + 1.

Take µp to be the self-similar measure on Z2 corresponding to this system with the weights

p0 =
1

3
and p1 =

2

3
.
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To determine the ambient dimension of this space, take r = 2−m and ρ = 2−m−n where m,n ∈ N are

arbitrary, and suppose that x ∈ Z2 and ξ ∈ B(x, r). There exist i, j ∈ {0,1}∗ such that

B(x, r) = ϕi(Z2) and B(ξ, ρ) = ϕi ◦ ϕ j(Z2).

Then (
1

3

)m
≤ µ(B(x, r)) = pi ≤

(
2

3

)m
,

with equality on the left for i = (0,0, . . . ,0) and equality on the right for i = (1,1, . . . ,1). It is worth

noting that this implies that (Z2, µp) is not Ahlfors regular. In then follows that

µp(B(ξ, ρ)) = pipj ≥ pi
(
1

3

)n
=

(
1

3

)n
µp(B(x, r)).

Since r/ρ = 2n, this can be rewritten to obtain

µp(B(x, r)) ≤ 3nµp(B(ξ, ρ)) = (2n)
log(3)
log(2) µp(B(ξ, ρ)) =

(
r

ρ

) log(3)
log(2)

µp(B(ξ, ρ)),

where equality can be obtained for appropriate choices of B(ξ, ρ). Hence

Q := dimAs((Z2, µp)) =
log(3)
log(2) . (4.2.1)

Example 4.20 shows that even singleton points in Qp possess nontrivial complex dimensions. As

noted in that section, the translation invariance of the Haar measure on Qp ensures that every

singleton set is identical with respect to its complex dimensions. In contrast, µp is not translation

invariant, and singleton sets in (Z2, µp) don’t possess this kind of dimensional uniformity.

The singleton sets {0} and {1} provide extremal examples. Zero is the fixed point of ϕ0, and is

therefore the limit of any sequence of points obtained by iterating ϕ0. That is, if x is any point in Z2,
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then 0 = limn→∞ ϕn
0
(x) for any x ∈ Z2. Hence the distance zeta function ζ{0} is given by

ζ{0}(s) =
∫
Z2

d(x,0)s−Q dµp(x)

=

∞∑
n=0

∫
ϕn

0
(Z2)rϕn+1

0
(Z2)

d(x,a)s−Q dµp(x)

=

∞∑
n=0

∫
ϕn

0
(Z2)rϕn+1

0
(Z2)

2n(Q−s) dµp(x)

=

∞∑
n=0

2n(Q−s) [µp(ϕn0 (Z2)) − µp(ϕn+1
0 (Z2))

]

=

∞∑
n=0

2n(Q−s)
[(

1

3

)n
−

(
1

3

)n+1
]

=

2

3

∞∑
n=0

(
2Q−s

3

)n

=

2

3 − 2Q−s .

This is mentire with poles occurring whenever 2Q−s
= 3, where Q =

log(2)
log(3) as in (4.2.1). Solving

for s,

2s =
2Q

3
=

2
log(3)
log(2)

3
= 1 =⇒ s = %

2πk

log(2),

where k is any integer. Therefore

P(ζ{0}) = %
2πZ

log(2) .

Similarly, 1 is the fixed point of ϕ1, and 1 = limn→∞ ϕn
1
(x) for any x ∈ Z2. Hence, by an almost

identical computation,

ζ{1}(s) =
∞∑
n=0

∫
ϕn

1
(Z2)rϕn+1

1
(Z2)

2n(Q−s) dµp(x)

=

∞∑
n=0

2n(Q−s) [µp(ϕn1 (Z2)) − µp(ϕn+1
1 (Z2))

]

=

1

3

∞∑
n=0

(
2Q+1−s

3

)n

=

1

3 − 2Q+1−s .
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This is mentire with poles occurring whenever 2Q+1−s
= 3, where Q =

log(2)
log(3) as in (4.2.1). Again

solving for s,

2s =
2Q+1

3
=

2
log(3)
log(2) · 2

3
= 2 =⇒ s = 1 + %

2πk

log(2),

where k is any integer. Therefore

P(ζ{1}) = 1 + %
2πZ

log(2) .

A possible interpretation of this result is that {0} is a zero-dimensional fractal subset of (Z2, µp),

while {1} is a one-dimensional fractal subset. A more compelling interpretation is offered in

Chapter 5, in which the preceding computations can be recast in terms of the local distance zeta

functions at zero and one. ⊳

4.3 Examples in Vector Spaces over Qp

In this section, several examples of sets that occur as the attractors of self-similar iterated function

systems on Q
Q
p are given, where Q ≥ 1 is a natural number. A slightly modified definition is used:

a self-similar contraction on Q
Q
p is a map of the form

ϕ(x) = pk x + b,

where k ∈ N and b ∈ Q
Q
p . This is a somewhat more restrictive definition of a self-similar contraction

than that introduced previously.

In particular, Hutchinson [Hut81] observes that if ψ : Rd → Rd is a contracting similitude (as

per Definition 2.11), then

ψ(x) = cUx + b,

where U is a unitary (orthogonal) matrix, c is the contraction ratio of ψ, and b is a translation. Thus a

self-similar contraction mapping consists of a scaling (the contraction), a translation, and an unitary

transformation (a rotation and/or reflection). In the above definition of a self-similar contraction
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mapping on Q
Q
p , any analog of a unitary transformation has been omitted, and the contraction ratio

is assumed to be of the form p−k .

The second restriction is no restriction at all: if ϕ is a contracting similitude on Q
Q
p , then there

is some k ∈ N such that

d(ϕ(x), ϕ(y)) = |ϕ(x) − ϕ(y)|p = p−k

for any x, y ∈ Q
Q
p . The metric structure of Q

Q
p ensures that every contraction ratio must be a power

of the prime p. The omission of unitary transformations greatly simplifies computation, and, due to

the non-archimedean nature of the metric on Q
Q
p , represents no great loss of generality.

Self-similar sets with contraction ratio p

Proposition 4.23. Let I ( {0,1, . . . , p − 1}Q , and for each i ∈ I define the map

ϕi : Q
Q
p → Q

Q
p where ϕi(x) := px + i.

Note that each such map is a contracting similitude with ratio p−1. The collection of maps {ϕi}i∈I

defines a self-similar iterated function system with attractor A . Then the complex dimensions of A

are given by

P(ζA ) =
{

log |I |
log(p) + %

2πZ

log(p)

}

This result is independent of the choice of metric (that is, for any α ∈ [1,∞], the result holds).

Proof. It will be convenient to work within the framework of relative fractal drums. Let

Ω := B≤(0,1) rA = Z
Q
p rA ,

and for each n ∈ N, define

Ω0 := Z
Q
p r Φ(ZQ

p ), and Ωn := Φ(Ωn−1) = Φn(Ω0).
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If m , n then Ωm ∩ Ωn = �, and Ω =
⋃
Ωn. Then, by definition of the union of relative fractal

drums,

(A ,Ω) =
∞⋃
n=0

(A ,Ωn) .

This union satisfies the hypotheses of Theorem 3.34 (with A = An = A for all n), hence

ζA (s) = ζA ,Ω(s) =
∞∑
n=0

ζA ,Ωn
(s). (4.3.1)

Next, by definition of Ωn

Ωn = Φ(Ωn−1) =
⋃
i∈I

(pΩn−1 + i) .

But pΩn−1 + i is isometric to pΩn−1, hence Ωn is the (disjoint) union of |I | copies of pΩn−1 (where

|I | denotes the cardinality of I ). Similarly, as A is the attractor of {ϕi}, it follows that

A = Φ(A ) =
⋃
i∈I

(pA + i) ,

which is the union of |I | copies of pA . It then follows from Theorems 3.34 and 3.32 that for each

n ∈ N,

ζA ,Ωn
(s) =

∑
i∈I

ζpA ,pΩn−1
(s) =

∑
i∈I

p−sζA ,Ωn−1
(s) = |I |p−sζA ,Ωn−1

(s).

By induction, it follows that

ζA ,Ωn
(s) = (|I |p−s)n ζA ,Ω0

(s).

Finally, note that if x ∈ Ω0, then d(x,A ) = 1. It then follows that

ζA ,Ω0
(s) =

∫
Ω0

d(x,A )s−Q dµ(x) =
∫
Ω0

dµ(x) = µ(Ω0) = µ(ZQ
p r Φ(ZQ

p )

= µ(ZQ
p ) − µ

(⋃
i∈I

ϕi

(
Z

Q
p

))
= 1 −

∑
i∈I

µ
(
pZ

Q
p

)
= 1 − |I |p−Q . (4.3.2)
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Therefore (4.3.1) becomes

ζA (s) =
∞∑
n=0

ζA ,Ωn
(s) =

∞∑
n=0

(|I |p−s) ζA ,Ω0
(s) =

(
1 − |I |

pQ

) ∞∑
n=0

( |I |
ps

)n
.

Observe that this series converges on the open right half-plane {ℜ(s) > logp |I |}. On this half-

plane,

ζA (s) =
(
1 − |I |

pQ

) ∞∑
n=0

( |I |
ps

)n
=

(
1 − |I |

pQ

)
ps

ps − |I | (4.3.3)

which is a mentire function that extends ζA to all of C. It therefore follows that the complex

dimensions of A are given by

P(ζA ) =
{

log |I |
log(p) + %

2πZ

log(p)

}
.

Note that in the p-adic setting, the complex dimensions of the attractor of a self-similar iterated

function system on Q
Q
p depend only on p and the number of maps in the system. In particular, the

complex dimensions do not depend on the ambient dimension Q (except in the sense that pQ gives

an upper bound on |I |).

It is also worth noting that this result does not depend on the choice of metric. If, instead, {ϕi}

is regarded as an iterated function system on (QQ
p , d

α) for some α ∈ [1,∞), then d(x,A ) = Q1/α for

any x ∈ Ω0. Hence (4.3.2) becomes

ζA ,Ω0
(s) =

∫
Ω0

d(x,A )s−Q dµ(x) = Q1/αµ(Ω0) = Q1/α
(
1 − |I |

pQ

)
.

The distance zeta function is then given by

ζA (s) = Q1/α
(
1 − |I |

pQ

)
ps

ps − |I | ,

which is mentire and has the same pole set as (4.3.3). �

The following two examples are applications of Example 4.23 in cases where the complex

dimensions have previously been computed using other techniques.
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3Z3 3Z3 + 1 3Z3 + 2

Z3

3
Z

3
3
Z

3
+

1
3
Z

3
+

2

Z
3

3Z3

×3Z3

3Z3 + 1
×3Z3

3Z3 + 2
×3Z3

3Z3

×3Z3 + 1
3Z3 + 1
×3Z3 + 1

3Z3 + 2
×3Z3 + 1

3Z3

×3Z3 + 2
3Z3 + 1
×3Z3 + 2

3Z3 + 2
×3Z3 + 2

Z3 ×Z3

Figure 4.2: A schematic representation of Z3 ×Z3. The iterated function system which gives rise to

the 3-adic Cantor dust consists of the four maps which take Z3 to each of the four shaded rectangles

in the product space. For example, ϕ(0,2)(Z3) = (3Z3) × (3Z3 + 2).

Example 4.24. Let C3 denote the 3-adic Cantor set, which is the attractor of an iterated function

system on Q3 consisting of two maps, each with a scaling ratio of 3. Specifically, the maps are given

by

ϕ0(x) = 3x, and ϕ2(x) = 3x + 2,

where x ∈ Q3. By Proposition 4.23,

P(ζC3
) = log(2)

log(3) + %
2πZ

log(3) .

⊳

Example 4.25. The Cartesian product of two copies of the 3-adic Cantor set is the 3-adic Cantor dust,

denoted by C 2
3

. This set may be realized as the attractor of an iterated function system consisting of
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four maps, each with contration ratio 1/3. For each

j ∈ {(0,0), (0,2), (2,0), (2,2)},

define the similitude

ϕ j : Q2
3 → Q2

3

by

ϕ j(x) = 3x + j.

See Figure 4.2 for a representation of the action of these maps on the dressed unit ball Z3. It follows

from Proposition 4.23 that

P(ζ
C 2

3
) = log(4)

log(3) + %
2πZ

log(3),

which is the expected result. ⊳

General self-similar sets

Let {ϕi}i∈I be a self-similar IFS on Q
Q
p indexed by some finite set I . As indicated above, it may

be assumed without loss of generality that each map is of the form

ϕi(x) = pki x + bi,

where ki ∈ N and bi ∈ Z
Q
p for all i ∈ I . Assume further that

ϕi(ZQ
p ) ∩ ϕ j(ZQ

p ) for all i, j ∈ I with i , j. (4.3.4)

That is, assume that {ϕi}i∈I satisfies the open set condition with open set Z
Q
p . Let

K := max
{
k ∈ N

�� ϕi(x) = pkx + bi for some i ∈ I
}
.
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As I is a finite index set, K is well defined. For each k = 1, . . . ,K , let

ck :=
��{i ∈ I

�� ϕi(x) = pkx + bi
}�� .

That is, ck denotes the number of maps in the iterated function system {ϕi}i∈I with the contraction

ratio p−k . For each n ∈ Z, let

Cn := |{ i ∈ I
∗ | ϕi(x) = pnx + bi}| .

That is, Cn is counts the number of ways that maps from {ϕi}i∈I can be composed in order to obtain

a map with contraction ratio p−n. Observe that the values of Cn are given by the linear, homogeneous,

K-th order recurrence relation

Cn =

K∑
k=1

ckCn−k,

with the initial values

Cn =




0 if n < 0,

1 if n = 0 (this counts the empty composition), and

c1 if n = 1.

While explicit solutions to such recurrence relations can be determined in principle, such solutions

are unenlightening in the current context.

Let A denote the attractor of this IFS, and define

Ω := Z
Q
p rA and Ωι := Z

Q
p r Φ(ZQ

p ).

For each i ∈ I ∗, let

Ωi := ϕi(Ωι) = ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕi|i | (Ωι).
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Note that

Ω =
⋃
i∈I ∗

ϕi(Ωι).

where the condition (4.3.4) ensures that this union is disjoint. Since Z
Q
p is a δ-neighborhood of A ,

it follows from Theorem 3.34 that

ζA (s) = ζA ,Ω(s) =
∑
i∈I ∗

ζϕi (A ),ϕi (Ωι )(s). (4.3.5)

Since the composition of similarities is also a similarity, it follows from Theorem 3.32 that

ζϕi (A ),ϕi (Ωι )(s) =
(
p−

∑|i |
i=1

ki
)s
ζA ,Ωι

(s),

hence (4.3.5) becomes

∑
i∈I ∗

ζϕi (A ),ϕi (Ωι )(s) =
∑
i∈I ∗

(
p−

∑|i |
i=1

ki
)s
ζA ,Ωι

(s)

= ζA ,Ωι
(s)

∑
i∈I ∗

p−s
∑|i |

i=1
ki

= ζA ,Ωι
(s)

∞∑
n=0

Cnp−ns

In summary, if {ϕi}i∈I is a self-similar iterated function system on Q
Q
p with attractor A , then the

associated distance zeta function is given by

ζA (s) = ζA ,Ωι
(s)

∞∑
n=0

Cnp−ns, (4.3.6)

where ζA ,Ωι
(s) and {Cn | n ∈ N} can be given explicitly in particular examples. Moreover, due to

the discrete nature of the family of metrics dα on Q
Q
p , the function ζA ,Ωι

(s) will always be entire.

Hence this term contributes no singularities to the distance zeta function and, at worst, may lead to

cancelation of singularities. This implies that the complex dimensions are A are a subset of the

poles of the mentire function that extends the series in (4.3.6).
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Example 4.26. On Qp, let

ϕ1(x) := px, and ϕ2(x) := p2x + 1.

Retaining the notation developed above,

ζA ,Ωι
(s) =

∫
Ωι

d(x,A )s−1 dµ(x)

=

p−1∑
j=2

∫
pZp+j

d(x,A )s−1 dµ(x) +
p−1∑
j=1

∫
p2Zp+pj+1

d(x,A )s−1 dµ(x)

+

p−1∑
j=2

∫
pZp+j

dµ(x) +
p−1∑
j=1

∫
p2Zp+pj+1

(p−1)s−1 dµ(x)

=

p−1∑
j=2

µ(pZp + j) +
p−1∑
j=1

p1−sµ(p2Zp + pj + 1)

=

p − 2

p
+

p − 1

p2
p1−s .

To determine the values of Cn, note that c1 = c2 = 1, and so

Cn = Cn−1 + Cn−2, with initial values C0 = 1 and C1 = 1.

This is the recurrence relation defining the Fibonacci sequence, which has the well-known closed

form

Cn = Fn+1 =
1√
5

(
φn+1

+ ψn+1
)
,

where φ and ψ are the golden ratio and its conjugate, given by

φ =
1 +

√
5

2
and ψ =

1 −
√

5

2
.

Substituting this into (4.3.6) gives

ζA (s) = 1√
5

(
p − 2

p
+

p − 1

p2
p1−s

) ∞∑
n=0

(
φn+1 − ψn+1

)
p−ns . (4.3.7)
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The series converges absolutely for all s with sufficiently large real portion. For such s,

∞∑
n=0

(
φn+1 − ψn+1

)
p−ns = φ

∞∑
n=0

(
φ

ps

)n
− ψ

∞∑
n=0

(
ψ

ps

)n

=

φps

ps − φ − ψps

ps − ψ

=

φps(ps − ψ) − ψps(ps − φ)
(ps − φ)(ps − ψ)

=

(φ − ψ)p2s

(ps − φ)(ps − ψ)

=

√
5p2s

(ps − φ)(ps − ψ),

which is mentire. Therefore, substituting this into (4.3.7), an explicit mentire extension of the

distance zeta function is given by

ζA (s) = p
(p − 2)p2s

+ (p − 1)ps
(ps − φ)(ps − ψ) .

The numerator and denominator are never simultaneously zero, and so the poles of ζA are exactly

the zeros of the denominator. In particular,

P(ζA ) = log(φ)
log(p) + %

2πZ

log(p),
log(ψ)
log(p) + %

2πZ

log(p)

=

log(φ)
log(p) + %

2πZ

log(p),−
log(φ)
log(p) + %

(2π + 1)Z
log(p)

In the special case p = 2, the corresponding attractor A is the 2-adic Fibonacci string described in

[LvF13, Ex. 13.102]. ⊳

A self-affine example

In general, computations involving self-affine (rather than self-similar) sets are much more difficult.

In a general setting, contractions which scale by log-incommensurable ratios in different directions

provide a significant obstruction. In vector spaces over Qp (where p is fixed), this obstruction does

not exist. The following example describes a self-affine set in Q2
3
.
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3Z3

3Z3 + 1

3Z3 + 2

3Z3 3Z3 + 1 3Z3 + 2

9Z3 + 0

9Z3 + 3

9Z3 + 6

9Z3 + 1

9Z3 + 4

9Z3 + 7

9Z3 + 2

9Z3 + 5

9Z3 + 8

Figure 4.3: The unit “square” in Q2
3

is the set Z2
3
. This square consists of 9 squares of the form

(3Z3 + i) × (3Z3 + j), where i, j = 0,1,2. Each of these, in turn, consists of 9 smaller squares, and

so on. The image of Z2
3

under the IFS is shown in grey.

Example 4.27. Let {ϕi}4
i=1

be the IFS on Q2
3

consisting of the maps

ϕ1(x) =
©­­«
3 0

0 9

ª®®¬
x +

©­­«
0

3

ª®®¬
, ϕ2(x) =

©­­«
3 0

0 9

ª®®¬
x +

©­­«
2

3

ª®®¬
,

ϕ3(x) =
©­­«
3 0

0 9

ª®®¬
x +

©­­«
0

5

ª®®¬
, ϕ4(x) =

©­­«
3 0

0 9

ª®®¬
x +

©­­«
2

5

ª®®¬
.

The action of this IFS on Z2
3

is diagramed in Figure 4.3. Let A denote the attractor of this system,

let Ω = Z2
3
rA , and let

A0 := Z2
3 and An := Φn(A0)
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Υ
0,1
n

Ξ1
n

Υ
0,2
n

Ω0
n

Υ
0,3
n

Ξ2
n

Υ
0,4
n

9n+1(9Z3 + 0)
9n+1(9Z3 + 3)
9n+1(9Z3 + 6)

9n(3Z3 + 1)

9n+1(9Z3 + 2)
9n+1(9Z3 + 5)
9n+1(9Z3 + 8)

3n(3Z3 + 0) 3n(3Z3 + 1) 3n(3Z3 + 2)

Figure 4.4: A decomposition of ϕn
1
(Z2

3
) = 3nZ3 × 9nZ3. Each of the 4n congruent rectangles that

compose An r An+1 can be similarly decomposed into sets Ωi
n, Υ

i, j
n , and Ξ

i, j
n . To simplify notation,

let Ωn := Ω0
n, Υn := Υ0,1

n , and Ξn := Ξ0,1
n .

denote the prefractal approximates. Observe that An consists of 4n translated copies of the rectangle

3nZ3 × 9nZ3, and that each of these rectangles can be further decomposed into the rectangles Ωn,

four sets of the form Υ
i, j
n , and two sets of the form Ξ

i, j
n , as shown in Figure 4.4. As all of these sets

are disjoint,

(A ,Ω) =
∞⋃
n=0

(A , An r An+1) =
∞⋃
n=0

4n−1⋃
i=0

(A ,Ωi
n) ∪

∞⋃
n=0

4n−1⋃
i=0

4⋃
j=1

(A ,Υ
i, j
n ) ∪

∞⋃
n=0

4n−1⋃
i=0

2⋃
j=1

(A ,Ξ
i, j
n ).

Hence

ζA (s) =
∞∑
n=0

4n−1∑
i=0


ζA ,Ωi

n
(s) +

4∑
j=1

ζ
A ,Υ

i , j
n
(s) +

2∑
j=1

ζ
A ,Ξ

i , j
n
(s)


=

∞∑
n=0

4n
[
ζA ,Ωn

(s) + 4ζA ,Υn (s) + 2ζA ,Ξn (s)
]
,

=

∞∑
n=0

4nζA ,Ωn
(s) + 4

∞∑
n=0

4nζA ,Υn (s) + 2

∞∑
n=0

4nζA ,Ξn (s) (4.3.8)
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ω
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A

Figure 4.5: The RFD Ωn can be decomposed into sub-RFDs as shown here. Note that
⋃

m,k ω
m,k
n is

the complement of 9n(3Z3 + 1) × C , where C is a ternary Cantor set in Z3.

where Ωn may be taken to be any of the 4n congruent sets of the form Ωi
n contained in An r An+1

(Υn and Ξn can be defined similarly).

If x ∈ Ξn, then the “horizontal” distance from x to the attractor is exactly 3−n, while the “vertical”

distance to the attractor is at most 9−n. Thus d(x,Ξn) = 3−n for any such x. As µ(Ξn) = 27−n−1, it

follows that

ζA ,Ξn (s) =
∫
Ξn

d(x,A )s−2 dµ(x) =
∫
Ξn

(
1

3

)n(s−2)
dµ(x)

=

(
1

3

)n(s−2)
µ(Ξn) =

(
1

3

)n(s−2) (
1

27

)n+1

=

1

3

(
1

3s+1

)n
.

Thus

2

∞∑
n=0

4nζA ,Ξn (s) =
2

3

∞∑
n=0

(
4

3s+1

)n
=

2 · 3s

3 · 3s − 4
. (4.3.9)

Obtaining an explicit formula for ζA ,Ωn
(s) is somewhat more complicated. Further sub-divide

Ωn as shown in Figure 4.5. By construction of the ω
m,k
n ,

Ωn = (a set of measure zero) ∪
∞⋃

m=0

2m⋃
k=1

ωm,k
n , (4.3.10)
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where the unions are disjoint. Note that if x ∈ ω
m,k
n , then the “vertical” distance to the attractor

is 9−n, and the “horizontal” distance is 3−(m+n). Hence for any x ∈ ωm,k
n ,

d(x,A ) = max

{(
1

9

)n
,

(
1

3

)m+n}
=




(
1

3

)m+n
if m < n, and(

1

3

)2n

if m ≥ n.

In particular, the distance does not depend on k. Next, note that

µ(ωm,k
n ) =

(
1

3

)m
µ(Ωn) =

(
1

3

)m+3n+1

Again, note that this does not depend on k. It then follows that

ζA ,Ωn
(s) =

∞∑
m=0

2m∑
k=1

ζ
A ,ω

m ,k
n

(s)

=

∞∑
m=0

2mζ
A ,ω

m ,1
n

(s)

=

3s−1

3s − 6

(
1

3s+1

)n
− 3s−1

3s − 6

(
2

32s

)n
+

(
2

32s

)n
.

Hence

∞∑
n=0

4nζA ,Ωn
(s) = 3s−1

3s − 6

∞∑
n=0

(
4

3s+1

)n
− 3s−1

3s − 6

∞∑
n=0

(
8

32s

)n
+

∞∑
n=0

(
8

32s

)n

=

9 · 33s − 8 · 32s

3(3 · 3s − 4)(32s − 8) . (4.3.11)

Finally, note thatΥn can be decomposed in a manner similar toΩn (replace Ωn withΥn andω
m,k
n

with υ
m,k
n in Figure 4.5 to get an intuition for the decomposition). If x ∈ υm,kn , then the “vertical”

distance to the attractor is 3 · 9−n, and the “horizontal” distance to the attractor is 3−(m+n). Hence if
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x ∈ υm,kn , then

d(x,A ) = max

{
1

3

(
1

9

)n
,

(
1

3

)m+n}
=




(
1

3

)m+n
if m ≤ n, and(

1

3

)2n+1

if m > n.

Also

µ(υm,kn ) =
(
1

3

)m
µ(Υn) =

(
1

3

)m+3n+2

As was the case in the decomposition of Ωn, none of these distances or volumes depends on k. It

the follows that

ζA ,Υn (s) =
∞∑

m=0

2m∑
k=1

ζ
A ,υ

m ,k
n

(s)

=

∞∑
m=0

2mζ
A ,υ

m ,1
n

(s)

=

3s−2

3s − 6

(
1

3s+1

)n
− 2

3(3s − 6)

(
2

32s

)n
+

2

3s

(
2

32s

)n
.

Hence

4

∞∑
n=0

4nζA ,Υn (s)

=

4 · 3s−2

3s − 6

∞∑
n=0

(
4

3s+1

)n
− 8

3(3s − 6)

∞∑
n=0

(
8

32s

)n
+

8

3s

∞∑
n=0

(
8

32s

)n

=

4 · 33s
+ 72 · 32s − 96 · 3s

3(3 · 3s − 4)(32s − 8) (4.3.12)
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Substituting the results of (4.3.9), (4.3.11), and (4.3.12) into the formula at (4.3.8), the distance

zeta function is explicitly given by

ζA (s) =
∞∑
n=0

4nζA ,Ωn
(s) + 4

∞∑
n=0

4nζA ,Υn (s) + 2

∞∑
n=0

4nζA ,Ξn (s)

=

9 · 33s − 8 · 32s

3(3 · 3s − 4)(32s − 8) +
4 · 33s

+ 72 · 32s − 96 · 3s
3(3 · 3s − 4)(32s − 8) +

2 · 3s
3 · 3s − 4

=

3s(5 · 32s
+ 16 · 3s − 32)

(3 · 3s − 4)(32s − 8) .

This function may be extended to a mentire function with poles

P(ζA ) = log(4)
log(3) + 1 + %

2πZ

log(3),
3 log(2)
2 log(3) + %

πZ

log(3) .

Observe that the principle complex dimension 3
2

log3(2) is exactly what might be expected for the R2

analog of A (that is, the product of the 1
3
- and 1

9
-Cantor sets in R2), as described in [McM84]. ⊳

4.4 Comparison with Past Results

A theory of self-similar p-adic fractal strings was developed by Lapidus and Lũ’ [LL08,LL09]. This

theory closely parallels the one-dimensional theory of fractal harps in R described by Lapidus and

van Frankenjuijsen [LvF13], and recalled above in Chapter 1.

Let Lp ⊆ Qp be open and bounded. The set Lp may be written as

⋃
j∈N

aj + pn jZp =

⋃
j∈N

B(aj, p
−n j )

where for any point aj ∈ Lp, the ball B(aj, p
−n j ) is the largest dressed ball containing aj which is

contained in Lp. This decomposition is not unique, but the boundedness of Lp together with the

fact that “every point is the center” (see Theorem 4.18(c)) ensures that there is a unique minimal

decomposition into non-overlapping balls.
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The p-adic geometric zeta function associated to Lp is

ζLp
(s) :=

∑
j∈N

µp(B(aj, p
−n j )s =

∑
j∈N

p−n j s .

In the framework of the distance and tube zeta functions developed here, study a p-adic fractal

string Lp by taking

E = B(a, pn) r Lp,

where a is any point contained inLp , and n is chosen so that B(a, pn ) is the smallest ball containingLp .

Observe that B(a, pn) is a δ-neighborhood of E for an appropriately chosen δ. It follows almost

immediately that

ζE (s) =
∫
Eδ

d(x,E)s−1 dµp(x)

=

∑
j∈N

∫
B(a j ,p

−n j )
d(x,E)s−1 dµp(x)

=

∑
j∈N

(p−n j )s−1

∫
B(a j ,p

−n j )
dµp(x)

=

∑
j∈N

(
p−n j s+n j

)
p−n j

=

∑
j∈N

p−n j s

= ζLp
(s).

In short, the distance zeta function simplifies to precisely the geometric zeta function defined by

Lapidus and Lũ’. Placing this work in the context of this thesis resolves a couple of open questions:

Remark 4.28 ([LL09, §5.4]). Lapidus and Lũ’ discuss the possibility of extending tube formulæ to

the setting of non-archimedian self-similar fractal strings. Watson [Wat17] obtained tube formulæ

for subsets of Ahlfors regular metric spaces. As Qp is Ahlfors 1-regular, Watson’s work resolves

this question in the p-adic setting. Generalizations to adelic spaces or Berkovich space (see [BR10])

are still open.
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Remark 4.29 ([LL09, §5.5]). Here, Lapidus and Lũ’ suggest studying higher dimensional analogs

of p-adic fractal strings and their associated tube formulæ. Again, the work of Watson [Wat17] fully

resolves this question in the setting of Q
Q
p . The question is unresolved in product spaces of the form

d∏
j=1

Xj,

where either Xj = Qp j
for some prime number pj , or Xj = R. This more general question is related

to still-open problems regarding the complex dimensions of product spaces, and has implications in

the setting of fractal subsets of adelic spaces. As discussed in Section 6.5, resolving this question is

likely to be quite difficult.

81



Chapter 5

Local Zeta Functions and Local

Dimensions

The zeta functions described in Chapter 3 can be used to give an extrinsic definition of fractality.

Lapidus et al. [LRZ̆16, p. 407] define fractality ". . . as the presence of at least one nonreal complex

dimension," where a complex dimension is a singularity of a meromorphically extended zeta function

associated to a bounded set or relative fractal drum in Rd. The same notion extends to the context

of this thesis:

Definition 5.1. A bounded set E ⊆ (X, d, µ) (or RFD (E,Ω) in (X, d, µ), respectively) is said to

be fractal if P(ζE ) (or P(ζE,Ω), respectively) contains at least one nonreal element. That is, a

bounded set or RFD is fractal if it possesses at least one nonreal complex dimension.

This notion of fractality is extrinsic: a set can only be described as fractal once it has been

embedded into a larger space. In this chapter, local versions of the tube and distance zeta functions

are introduced. These local fractal zeta functions are defined intrinsically and do not rely on any

embedding. However, the local fractal zeta functions retain many properties similar to the usual

tube and distance zeta functions, and can therefore be used to give an intrinsic notion of fractality.
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5.1 A brief historical note

The terms “local distance zeta function” and “local tube zeta function” are introduced by Lapidus

et al. [LRZ̆16, App. B]. In that text, the local distance zeta function associated to a bounded set

E ⊆ Rd is the family of relative distance zeta functions associated to the RFDs (E,Ω), where Ω

runs over the Borel subsets of a fixed δ-neighborhood Eδ (note that this involves a generalization the

notion of an RFD to include drums taken relative to Borel sets rather than just open sets).

“Pointwise” versions of these local fractal zeta are given in equations [LRZ̆16, (B.0.3),(B.0.4)],

which provide definitions in terms of relative zeta functions corresponding to RFDs of the form

(
{x},Br+δ(x) ∩ Ω

)
,

where r and δ are fixed positive constants, the set Br+δ(x) is the annulus with inner radius r and

outer radius r + δ

Br+δ(x) = B(x, r + δ) r B(x, r),

and Ω is any fixed Borel set. These local zeta functions are introduced “...to consider the fractal

properties of Ω near x.”

The goal in this thesis is similar: in order to understand the fractal properties of a space “near”

some point, introduce a zeta function which can detect those properties in some way. However, the

approach presented below is distinct from that suggested by Lapidus et al.: the local zeta functions

described in this chapter are defined for a large class of metric spaces, are not given with respect

to an ambient dimension, and have convergence properties related the multifractal spectrum of a

measure rather than the Minkowski dimension of a set.

5.2 Local zeta functions

In this section and the sequel, assume that X := (X, d, µ) is a metric measure space with µ a

Radon measure. The intrinsic properties of a space can be studied by considering the embeddings

of singleton points into that space. The first tool introduced is the local tube zeta function. This
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function is related to a complexified version of the ratio used to define the lower and upper Minkowski

dimensions (Definition 2.8).

Definition 5.2. Let x ∈ X and fix a bounded open set x ∈ Ω ⊆ X such that µ(Ω) < ∞. The local

tube zeta function at x relative to Ω is a function ζ̃ loc
x,Ω

(s) : C → C defined by the integral

ζ̃ loc
x,Ω(s) :=

∫ diam(Ω)

0

t−s−1µ(B(x, t) ∩ Ω) dt.

The local tube zeta function roughly corresponds to the relative tube zeta function associated

to the RFD (x,Ω), modulo a change of sign in the exponent and the omission of a factor related to

the measure theoretic Assouad dimension of the ambient space. The intuition is that the local tube

zeta function is sensitive to the intrinsic geometry of the space X , and does not require an a priori

embedding of X into a larger space.

Each local tube zeta function is related to a local distance zeta function in a manner similar to the

relation between the tube and distance functions associated to a subset of a metric measure space.

Definition 5.3. Let x ∈ X and fix a bounded open set x ∈ Ω ⊆ X such that µ(Ω) < ∞. The local

distance zeta function at x relative to Ω is a function ζ loc
x,Ω

(s) : C → C defined by the integral

ζ loc
x,Ω(s) :=

∫
Ω

d(y, x)−s dµ(y).

After replacing the bound in Lemma 3.9 with the bound σ < dimlocµ(x), the proof carries

through with minimal modification. Hence

ζ loc
x,Ω(σ) = diam(Ω)−σµ(Ω) + σζ̃ loc

x,Ω(σ) (5.2.1)

whenever the integrals defining both functions are finite. Both the local tube and local distance zeta

functions depend on a choice of a bounded open setΩwith finite measure. Once these conditions are

met, the dependence on Ω is inessential with respect to the analytic properties of the zeta functions,

as per the arguments leading to Lemma 3.2.
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Definition 5.4. The abscissa of (absolute) convergence of the local distance zeta function at x is

DC(ζ loc
x,Ω(s)) := sup

{
α ∈ R

����
∫
Ω

d(y, x)−α dµ(y) < ∞
}
.

Theorem 5.8 (below) shows that the abscissa of convergence coincides with the local dimension

of µ at x (when it exists) and, moreover, that the integral defining the local distance zeta function

converges on the half-plane to the left of the abscissa of convergence. The proof is handled in

steps, via the following three lemmata, which parallel the arguments in Chapter 3 (and therefore

parallel the development of the theory in [LRZ̆16, §2.1]). The first lemma is a local version of the

Harvey-Polking estimate (see Lemma 3.3).

Lemma 5.5. Let x ∈ X and fix some bounded open set x ∈ Ω ⊆ X with µ(Ω) < ∞. Ifσ < dimlocµ(x)

then

ζ loc
x,Ω(σ) =

∫
Ω

d(y, x)−σ dµ(y) < ∞.

Proof. Suppose that σ ≤ 0. Then

d(y, x) ≤ diam(Ω) ⇐⇒ d(y, x)−σ ≤ diam(Ω)−σ

for any y ∈ Ω. As Ω is assumed to be bounded, it has finite diameter, and so

∫
Ω

d(y, x)−σ dµ(y) ≤
∫
Ω

diam(Ω)−σ dµ(y) = diam(Ω)−σµ(Ω) < ∞,

where the final inequality follows from the hypothesis that Ω has finite measure. Hence the desired

result holds whenever σ ≤ 0.

Now suppose that σ > 0. Note that this necessarily implies that the lower local dimension of µ

at x must be positive. Let Q denote this lower local dimension—that is, let

Q := dimlocµ(x) = lim inf
rց0

log(µ(B(x, r)))
log(r) .
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Fix some ε > 0 such that σ < Q − ε. As Ω is open, there exists some r1 > 0 such that

B(x, r1) ⊆ Ω.

By definition of Q in terms of the limit inferior, there exists some r2 > 0 such that

Q − ε < log(µ(B(x, r)))
log(r)

whenever r < r2. Fix some r∗ so that

0 < r∗ < min{r1, r2}.

Hence

Q − ε < log(µ(B(x, r)))
log(r) =⇒ µ(B(x, r)) < rQ−ε (5.2.2)

whenever r < r∗.

For each j ∈ N, define the annulus Aj by

Aj := B
(
x,2−jr∗

)
r B

(
x,2−(j+1)r∗

)
.

These annuli are disjoint and contained in Ω, and so

∫
Ω

d(y, x)−σ dµ(y) =
∫
ΩrB(x,r∗)

d(y, x)−σ dµ(y) +
∫
B(x,r∗)

d(y, x)−σ dµ(y)

=

∞∑
j=0

∫
A j

d(y, x)−σ dµ(y)

︸                        ︷︷                        ︸
=:I

+

∫
B(x,r∗)

d(y, x)−σ dµ(y)

︸                         ︷︷                         ︸
=:J

. (5.2.3)

As Ω has finite measure, the set Ω r B(x, r∗) has finite measure as well. On this set, the distance

function is bounded away from zero, and so the integral J converges absolutely in the sense of a

Lebesgue. Therefore J < ∞.
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It remains to bound I. Begin by observing that on the annulus Aj , the distance function satisfies

the inequality

2−(j+1)r∗ ≤ d(y, x) ≤ 2−jr∗ =⇒ d(y, x)−σ ≤ 2σ(j+1)(r∗)−σ .

Substituting this into I at (5.2.3) gives

I =

∞∑
j=0

∫
A j

d(y, x)−σ dµ(y) ≤
∞∑
j=0

2σ(j+1)(r∗)−σµ(Aj). (5.2.4)

The monotonicity of the measure µ combined with the estimate at (5.2.2) imply that

µ(Aj) ≤ µ
(
B
(
x,2−jr∗

))
≤

(
2−jr∗

)Q−ε
,

hence (5.2.4) becomes

I ≤
∞∑
j=0

2σ(j+1)(r∗)−σµ(Aj)

≤
∞∑
j=0

2σ(j+1)(r∗)−σ
(
2−jr∗

)Q−ε

= 2σ(r∗)Q−σ−ε
∞∑
j=0

(
2σ−Q+ε

) j
.

This final sum converges if and only if σ−Q+ε < 0. But ε was chosen so that σ < Q−ε. Therefore

I < ∞, which completes the proof. �

Lemma 5.6. Let x ∈ X and fix some bounded open set x ∈ Ω ⊆ X with µ(Ω) < ∞. Ifσ > dimlocµ(x)

then

ζ loc
x,Ω(σ) =

∫
Ω

d(y, x)−σ dµ(y) = +∞.
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Proof. The proof of this result parallels the proof of Lemma 3.5. Fix some r∗ such that B(x, r∗) ⊆ Ω,

and note that

∫
Ω

d(y, x)−σ dµ(y) =
∫
ΩrB(x,r∗)

d(y, x)−σ dµ(x) +
∫
B(x,r∗)

d(y, x)−σ dµ(y)

≥
∫
B(x,r∗)

d(y, x)−σ dµ(y).

It is then sufficient to show that this last integral diverges. For each r ∈ (0, r∗], define

I(r) := ζ loc
x,B(x,r)(σ) =

∫
B(x,r)

d(x, y)−σ dµ(y).

As in the proof of Lemma 3.5, I(r) is a nondecreasing function of r and satisfies the inequality

I(r) ≥ r−σµ(B(x, r)).

Let Q = dimlocµ(x) so that

σ > Q = lim sup
rց0

log(µ(B(x, r)))
log(r) ,

and fix some ε ∈ (0, σ − Q). By definition of the limit supremum, there exists a sequence {rk}∞k=1

with rk ց 0 and

log(µ(B(x, rk)))
log(rk)

→ Q as k → ∞.

Then, for sufficiently large k,

���� log(µ(B(x, rk)))
log(rk)

− Q

���� < ε =⇒ −ε < log(µ(B(x, rk)))
log(rk)

− Q < ε

=⇒ r
Q−ε
k

> µ(B(x, rk)) > r
Q+ε

k
.

Then for any such k

ζ loc
x,Ω(σ) ≥ I(r∗) ≥ I(rk ) ≥ r−σk µ(B(x, rk)) ≥ r

−σ+Q+ε
k

.
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But −σ + Q + ε < 0 by the choice of ε, and so r
−σ+Q+ε
k

→ +∞ as rk ց 0, which completes the

proof. �

Lemma 5.7. Let x ∈ X , fix some bounded open set Ω ⊆ X with µ(Ω) < ∞, and suppose that there

is some s0 ∈ C such that

ζ loc
x,Ω(s0) =

∫
Ω

|d(y, x)−s0 | dµ(y) < ∞,

that is ζ loc
x,Ω

(s0) converges absolutely as a Lebesgue integral. Then

∫
Ω

|d(y, x)−s | dµ(y) < ∞

for any s ∈ C satisfying ℜ(s) < ℜ(s0).

Proof. Proof is obtained along the same lines as the proof of Lemma 3.6, mutatis mutandis. �

The local Harvey-Polking estimate (Lemma 5.5) together with Lemmata 5.6 and 5.7 imply that

the local distance zeta function converges on a half-plane to the left of dimlocµ(x) and diverges to

the right of this value. This observation is summarized by the following theorem.

Theorem 5.8. Let x ∈ X and suppose that dimloc µ(x) exists. Then

DC := DC(ζ loc
x,Ω) = dimloc µ(x).

and so ζ(s, x) converges for all s with ℜ(s) < DC , and diverges for all s with ℜ(s) > DC .

Definition 5.9. The abscissa of holomorphic continuation of the local distance zeta function at x is

given by

DH (ζ loc
x,Ω) := sup

{
α ∈ R

��� ζ loc
x,Ω is holomorphic on {ℜ(s) < α}

}
.

That is, DH (ζ loc
x,Ω

) is describes the boundary of the largest left half-plane to which the local distance

zeta function at x may be holomorphically extended.
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Lemma 5.10. Let x ∈ X and fix some bounded open set x ∈ Ω ⊆ X with µ(Ω) < ∞. The local

tube zeta function ζ̃ loc
x,Ω

and the local distance zeta function ζ loc
x,Ω

| are holomorphic on the open left

half-plane {ℜ(s) < dimlocµ(x)}.

Proof. Define

dν(y) := dµ|Ω(y) and ϕ(y) := d(x, y),

where µ|Ω denotes the restriction of µ to the open set Ω. By Lemmata 5.5 and 5.7

∫
Ω

ϕ(y)s dµ|Ω(y) =
∫
Ω

d(x, y)s dµ(y) = ζ loc
x,Ω(−s) < ∞

for any s > −dimlocµ(x). It then follows from Lemma 3.13 that ζ loc
x,Ω

is holomorphic on the open left

half-plane {ℜ(s) < dimlocµ(x)}.

Similarly,

ζ̃ loc
x,Ω(−s) =

∫ δ

0

ϕ(t)s dν(t),

where

dν(t) :=
1

t
dµ|Ω(t) and ϕ(t) := t.

The functional relation (5.2.1) together with Lemma 5.7 imply that ζ̃ loc
x,Ω

(−s) converges on the right

half-plane {ℜ(s) > dimlocµ(x)}, and so the desired result follows again from Lemma 3.13. �

Remark 5.11. Lemma 5.10 guarantees that both the local tube and distance zeta functions are

holomorphic on the open left half-plane bounded by the lower local dimension. It therefore follows

from Identity Theorem (e.g. [Sim15, Thm. 2.3.8]) that the functional relation at (5.2.1) holds on the

common domain of these functions. That is,

ζ loc
x,Ω(s) = diam(Ω)−sµ(Ω) + sζ̃ loc

x,Ω(s)

wherever both functions are defined.
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Theorem 5.12. Let x ∈ X , suppose that dimloc µ(x) = D exits, and fix some bounded open set

x ∈ Ω ⊆ X with µ(Ω) < ∞. Further suppose that µ is D-homogenous on Ω. Then

lim
σրD

ζ̃ loc
x,Ω(σ) = ∞,

from which it follows that DH (ζ loc
x,Ω

) = DC(ζ loc
x,Ω

).

Proof. As D = dimloc µ(x), it follows from Theorem 5.8 that

∞ > ζ̃ loc
x,Ω(σ)

for all σ < D. It therefore “makes sense” to consider the limit of ζ̃ loc
x,Ω

(σ) as σ increases to the local

dimension of the measure at x.

Fix some δ ∈ (0,1) such that B(x, δ) ⊆ Ω. By hypothesis, the restriction of µ to Ω is D-

homogenous, and so there is some M > 0 such that

µ(B(x, δ))
µ(B(x, r)) ≤ M

(
δ

r

)D
=⇒ µ(B(x, δ))

MδD
rD ≤ µ(B(x, r))

for all 0 < r < δ. Combining the constants into a single term, this implies that there is C > 0 such

that

µ(B(x, r)) ≥ CrD

for all r < δ. Hence

lim
σրD

ζ̃ loc
x,Ω(σ) =

∫ diam(Ω)

0

t−σ−1µ(B(x, t) ∩ Ω) dt

≥ lim
σրD

∫ δ

0

t−σ−1µ(B(x, t)) dt

≥ C lim
σրD

∫ δ

0

t−σ−1tD dt

= C lim
σրD

δD−σ

D − σ

= ∞.

91



Thus the local tube zeta function possesses a singularity at dimlocµ(x), which implies that

DH (ζ loc
x,Ω) ≤ DC(ζ loc

x,Ω).

Equality follows from Lemma 5.10. �

Definition 5.13. Let x ∈ X and fix an appropriate neighborhood Ω of x. Suppose that ζ loc
x,Ω

(s) admits

a meromorphic extension to some open domain W containing the critical line {ℜ(s) = D(ζ loc
x,Ω

)}.

The set

P(ζ loc
x,Ω) =

{
ω

��� ω ∈ PU (ζ loc
x,Ω) for some U

}

is the set of local complex dimensions of X at x. The notation here is consistent with that in

Definition 3.19.

The local complex dimensions may also be understood in terms of the poles of a meromorphic

continuation of the local tube zeta function. However, the functional equation (5.2.1) implies that

the local tube zeta function may have an additional pole of order one at zero.

5.3 Examples

Example 5.14 (A point inQp). In Example 4.20, it was observed that a singleton point inQp exhibits

geometric oscillation, in the sense that it has nonreal complex dimensions. Per Definition 5.1, this

result is interpreted to mean that a singleton point in Qp is a fractal.

An alternative interpretation is that the complex dimensions of this singleton point provide

information about the ambient space of p-adic numbers. It is not that the point is fractal, but rather

that it has been embedded into a fractal space. This is a conclusion which can be phrased in terms

of local complex dimensions.
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Figure 5.1: In both graphs, the black lines are the graph of the function

r 7→ log(µ3(B(x, r)))
log(r) ,

where x ∈ Qp and r > 0, and the grey line is the graph of the corresponding function

r 7→ log(m(B(ξ, r)))
log(r) ,

where ξ ∈ R, r > 0, and m is the usual one-dimensional Lebesgue measure on r. The graph on the

right has been log-scaled. In both the real and 3-adic cases, the ratio tends to 1 as r goes to zero,

which corresponds to the fact that

dimloc µ3(x) = dimloc m(ξ) = 1

for any x ∈ Q3 and ξ ∈ R.
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Paralleling Example 4.20, let x = 0 and fix Ω = Zp. Via a computation that is substantially

similar to that in Example 4.20, the local distance zeta function corresponding to this point is then

ζ loc
0,Zp

(s) =
∫
Zp

d(x,0)−s dµp(x) =
p − 1

p

(
1

1 − ps−1

)
.

The local distance tube zeta function extends to a mentire function which possesses a simple pole

whenever

s ∈ 1 + %
2πZ

log(p) =P(ζ loc
0,Zp

).

By a translation, a similar result will hold for any x ∈ Qp. That is, if x ∈ Qp, then

P(ζ loc
x,Zp

) = 1 + %
2πZ

log(p) .

These local complex dimensions lie on a vertical line with real part 1, which comports with the

observation that dimloc µ(x) = 1 for all x ∈ Qp. Moreover, the nonreal complex dimensions indicate

that the measure µp exhibits an oscillatory behaviour around each point. This behaviour can be seen

in Figure 5.1, which plots the ratio

log(µ3(B≤(x, r)))
log(r)

against the radius r. The behaviour is similar in Qp for any prime p, though the oscillations are of

higher frequency for larger p. ⊳

Example 5.15 (The ternary Cantor set). Let (Φ,p) = {(ϕ0, p0), (ϕ1, p1)} be the weighted SSIFS with

maps

ϕ0(x) =
1

3
x and ϕ1(x) =

1

3
x +

2

3
.

and weights p0 = p1 =
1
2
. Let C denote the attractor of Φ, and let µ denote the induced self-similar

measure supported on C . As a set, C is the “usual” ternary Cantor set. This set is complete with

respect to the subspace metric d induced by the Euclidean metric on R, and µ coincides with the

log3(2)-dimensional Hausdorff measure supported on C .
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Figure 5.2: A graph of k, the Cantor function, on the interval [0,1]. If t is an element of [0,∞), then

µ(B(0, t)) = k(x).

Take x = 0, Ω = B(0,1), and let k : R → R denote the Cantor function, pictured in Figure 5.2.

The local tube zeta function at x relative to Ω is given by

ζ̃ loc
x,Ω(s) =

∫ 1

0

t−s−1k(t) dt =

∫ 1/3

0

t−s−1k(t) dt +

∫ 1

1/3
t−s−1k(t) dt

︸              ︷︷              ︸
=:ϑ(s)

, (5.3.1)

where ϑ is an entire function. For any t ∈ [0,1], the Cantor function satisfies the relation

k
( t

3

)
=

1

2
k(t).

Thus, making the change of variables τ = 3t,

∫ 1/3

0

t−s−1k(t) dt =

∫ 1

0

( τ
3

)−s−1

k
(τ
3

) dτ

3
=

3s

2
ζ loc
x,Ω(s).
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Substituting this into (5.3.1) and solving for the local tube zeta function gives

ζ̃ loc
x,Ω(s) =

3s

2
ζ loc
x,Ω(s) + ϑ(s) =⇒ ζ̃ loc

x,Ω(s) =
2

2 − 3s
ϑ(s).

The first term has poles whenever 3s = 2, that is for all

s ∈ ωk =
log(2)
log(3) + %

2πZ

log(3) .

Each one of these poles is a pole of the local tube zeta function as long as ϑ(ωk) , 0. While

computing ϑ explicitly is quite difficult, it can be bounded away from zero near ω0. If s ∈ (0,1),

then

ϑ(s) =
∫ 1

1/3
t−s−1k(t) dt

≥
∫ 1

1/3
k(t) dt (s + 1 > 1 and t ≤ 1, so t−s−1 > 1)

≥ 1

2

∫ 1

1/3
dt (k(t) ≥ 1/2 for t ∈ [1/3,1])

=

1

3
.

Thus on the interval (0,1), the function ϑ is bounded away from zero. In particular, no cancelation

occurs at s = log(2)/log(3), which implies that

lim
s→log3(2)

ζ̃ loc
x,Ω(s) = +∞.

That is, ω0 is a pole of the local tube zeta function.

If x is any rational point of the Cantor set—that is, if there is a word i ∈ I ∗ such that

x ∈ ϕi({0,1})—then a similar argument holds by considering Ω = B(x,3 |i |). That is, for any

rational points x ∈ C , the local tube zeta function relative to B(x,3 |i |) will be as above, up to some

scaling. The structure of the local complex dimensions of C at irrational points is not currently
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understood, though it is conjectured that it is identical to the structure at rational points, as the Cantor

set is quite homogeneous. ⊳

In Example 5.15, the self-similar structure of the Cantor set and the regularity of the natural

Hausdorff measure supported on that set make it possible to obtain a tractable representation of the

local tube zeta function. In light of the work done by Watson [Wat17], this example is not surprising:

the usual log3(2)-dimensional Hausdorff measure is Ahlfors regular on the Cantor set. However,

similar techniques to those used in Example 5.15 may be applied to recover information about the

multifractal spectrum of measures which are not Ahlfors regular, where previous results do not apply.

For instance, Example 5.16 describes a family of irregular self-similar measures supported on the

Cantor set.

Example 5.16 (A family of self-similar measures on the Cantor set). Let (Φ,p) = {(ϕ0,p0), (ϕ1,p1)}

be the weighted SSIFS with maps

ϕ0(x) =
1

3
x and ϕ1(x) =

1

3
x +

2

3
.

and weights p0 = q and p1 = 1−q, where q ∈ (0,1). Let C denote the attractor ofΦ, and let µp denote

the induced self-similar measure supported on C . As in the previous example, the underlying metric

space is the usual ternary Cantor set with the subspace metric inherited from R. For q < {0,1/2,1},

the measure µp is an irregular (in the sense of Ahlfors) multifractal measure.

The local tube zeta function at 0 relative to B(0,1) is

ζ̃ loc
0,B(0,1)(s) =

∫ 1

0

t−s−1µp(B(0, t)) dt =

∫ 1/3

0

t−s−1µp(B(0, t)) dt +

∫ 1

1/3
t−s−1µp(B(0, t)) dt

︸                       ︷︷                       ︸
=:ϑ(s)

,

where ϑ is an entire function. For any t ∈ [0,1], the self-similarity of the measure gives

µp

(
B

(
0,

t

3

))
= qµp(B(0, t)).
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Make the change of variables τ = 3t to obtain

ζ̃ loc
0,B(0,1)(s) =

∫ 1

0

(τ
3

)−s−1

µp

(
B

(
0,

t

3

)) dτ

3
+ ϑ(s)

= q3s
∫ 1

0

τ−s−1µp(B(0, τ)) dτ + ϑ(s)

= q3s ζ̃ loc
0,B(0,1)(s) + ϑ(s).

Solve for the local tube zeta function to get

ζ̃0,B(0,1)(s) =
ϑ(s)

1 − q3s . (5.3.2)

The denominator is zero when

s ∈ log(1/q)
log(3) + %

2πZ

log(3), (5.3.3)

and, by arguments similar to those in the previous example, ϑ is bounded away from zero when

s ∈ (0,1). Therefore the local tube zeta function possesses a simple pole at

s =
log(1/q)
log(3) .

This corresponds to the local dimension of µp at 0. Details of the computation of the local dimension

are given in a more general setting in Proposition 5.17.

Similar arguments demonstrate that

ζ̃1,B(1,1)(s) =
ϑ(s)

1 − (1 − q)3s ,

where ϑ is an entire function (though not the same function as in (5.3.2)). This possesses a simple

pole at

s =
log(1/(1 − q))

log(3) ,

which corresponds to dimloc µ(1). ⊳
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More generally, if a self-similar measure arises from a weighted iterated function system which

satisfies the open set condition, then similar arguments apply.

Proposition 5.17. Let (Φ,p) be a weighted self-similar iterated function system onRd which satisfies

the open set condition. Let ϕ ∈ Φ be one of the contracting similitudes, let c denote the contraction

ratio of ϕ, and let q ∈ p denote the weight associated to ϕ.

Take x to be the unique fixed point of ϕ, that is, x is the unique point such that

ϕ(x) = x.

Choose Ω = B(x, r) so that

ϕ(B(x, r)) ∩ ψ(B(x, r)) = �

for any ψ ∈ Φ with ψ , ϕ (such a choice is possible, as Φ satisfies the open set condition). Finally,

let µp denote the self-similar measure supported on the attractor of Φ which is induced by (Φ,p).

The local tube zeta function at x relative to Ω is

ζ̃ loc
x,Ω(s) =

ϑ(s)
1 − qc−s

where ϑ is an entire function. Moreover, ζ̃ loc
x,Ω

possesses a simple pole on the real axis at dimloc µ(x).

Proof. The local tube zeta function is given by

ζ̃ loc
x,Ω(s) =

∫ r

0

t−s−1µp(B(x, t)) dt =

∫ cr

0

t−s−1µp(B(x, t)) dt +

∫ r

cr

t−s−1µp(B(x, t)) dt︸                       ︷︷                       ︸
=:ϑ(s)

, (5.3.4)

where ϑ is an entire function. By hypothesis, Φ satisfies the open set condition for an open set U,

and Ω is contained in U. Thus

ϕ(Ω) ∩ ψ(Ω),= �

99



where ψ any map in Φ other than ϕ. The self-similar structure of the measure then gives

µ(B(x, t)) = qµ(B(x, c−1t))

for any t ∈ [0, cr]. After the change of variables t = cτ, the self-similarity of the measure implies

that ∫ cr

0

t−s−1µp(B(x, t)) dt = qc−s
∫ r

0

t−s−1µp(B(x, τ)) dτ = qc−s ζ̃x,B(x,r)(s).

Substitute this into (5.3.4) and isolate the local tube zeta function to obtain

ζ̃x,B(x,r)(s) = qc−s ζ̃x,B(x,r)(s) + ϑ(s) =⇒ ζ̃x,B(x,r)(s) =
ϑ(s)

1 − qc−s .

As ϑ is entire, the set of local complex dimensions is contained in the zero set of the denominator,

that is

P(ζx,B(x,r)) ⊆
log(q)
log(c) + %

2πZ

log(c),

which is the claimed form of the local tube zeta function. For s on the positive real axis, ϑ(s) is

bounded away from zero: if s > 0, then

ϑ(s) =
∫ r

cr

t−s−1µp(B(x, t)) dt

≥ r−s−1

∫ r

cr

µp(B(x, t)) dt (t ∈ [cr, r] and −s − 1 < 0)

≥ r−s−1(r − cr)µp(B(x, cr))

=

1 − c

rs
µp(B(x, cr)).

The self-similar measure supported on A gives positive measure to every ball of positive radius

centered in A , hence µp(B(x, cr)) > 0. Therefore

ϑ(s) ≥ 1 − c

rs
µp(B(x, cr)) > 0
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for all s ∈ (0,∞). In particular,

ϑ

(
log(q)
log(c)

)
, 0,

which implies that ζ̃ loc
x,Ω

has a simple pole at

log(q)
log(c) .

Observe that if ρ ∈ (0, r), then there exists some natural number n such that

cn+1r ≤ ρ < cnr . (5.3.5)

Via the self-similar structure of µp,

µ(B(x, cnr)) = qnC,

where C = µ(B(x, r)) is a constant. Hence

(n + 1) log(q) + log(C) = log(µ(B(x, cn+1r)))

≤ log(µ(B(x, ρ)))

≤ log(µ(B(x, cnr)))

= n log(q) + log(C).

Divide through by log(ρ) and use the estimate (5.3.5) to obtain

(n + 1) log(p) + log(C)
(n + 1) log(c) ≥ log(µ(B(x, ρ)))

log(ρ) ≥ n log(q) + log(C)
n log(c) .
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As ρ tends to zero, n tends to infinity, thus by the squeeze theorem

log(q)
log(c) = lim

n→∞
(n + 1) log(q) + log(C)

(n + 1) log(c)

≥ lim
ρ→0

log(µ(B(x, ρ)))
log(ρ) (5.3.6)

≥ lim
n→∞

n log(q) + log(C)
n log(c)

=

log(q)
log(c) .

The limit (5.3.6) therefore exists, and is the local dimension of the measure. That is,

dimloc µ(x) =
log(q)
log(c) .

Note that Example 5.16 corresponds to the case c = 1/3. �

Corollary 5.18. Let (Φ,p) be a weighted self-similar iterated function system which satisfies the

open set condition for an open set U. Fix i ∈ I , let xi be the fixed point of ϕi, and let ci denote the

contraction ratio of ϕi, i.e.

ci =

|i |∏
k=1

cik .

Choose Ω = B(xi, r) so that

Ω ⊆ U.

The local tube zeta function at x relative to Ω is

ζ̃ loc
xi ,Ω

(s) = ϑ(s)
1 − pic−si

,

where ϑ is an entire function. Moreover, ζ̃ loc
xi ,Ω

possess simple pole at dimloc µ(x).

Proof. The collection of maps

Ψ = {ϕ j | j ∈ I
∗, | j | = | i |}
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is a self-similar iterated function system which has the same attractor asΦ. Note that the contraction

ratio of ϕ j is cj . To each map ϕ j ∈ Ψ, associate the weight

pj =

| j |∏
k=1

pjk

The self-similar measure induced by Ψ with these weights is the same as that induced by (Φ,p). The

conclusion follows by application of Proposition 5.17. �

The preceding proposition and corollary demonstrate how the local tube zeta function recovers

the local dimension of certain self-similar measures supported on the Cantor set. This falls under

the umbrella of “fine multifractal analysis” (see, for example, [Fal04, Ch. 17]). A natural next step is

to consider the properties of sets which exhibit the same “local structure”. Traditionally, this means

studying sets on which the measure exhibits some fixed scaling property, i.e.,

Xα = {x ∈ X | dimloc µ(x) = α}.

Roughly speaking, the fine multifractal spectrum is a function of the scaling exponents, given by

α 7→ dim(Xα),

where dim is fixed notion of dimension (typically the Hausdorff dimension).

In the case of an inhomogeneous self-similar measure, e.g. the measure µp in Example 5.16 for

any q < {0,1/2,1}, the set Xα will “typically” have fractal structure. As α varies, different fractals

are described. This observation leads to the terminology “multifractal measure”.

In the context of the local complex dimensions of a multifractal measure, this idea might be

expanded to the examination of sets which possess the same local complex dimensions, that is, sets

of the form

XP =

{
x ∈ X

��� P(ζ̃ loc
x,Ω) =P

}
,

where P is some fixed set of points in C.
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Other classes of zeta functions have been introduced in the past to study the properties of

multifractal measures. Rock’s thesis [Roc17] introduced a family of multifractal zeta functions

to study measures subordinate to certain one-dimensional fractal harps. Subsequent works have

expanded on the key ideas introduced by Rock: Lapidus and various collaborators [LR09, Lap09,

dSLRR13,ELMR15] have studied multifractal mesures on R, while Véhel and Mendivil expand the

approach to higher dimensional Euclidean spaces [JLVFM10].

The emphasis of these previous works is on the “course multifractal analysis” (again, see

[Fal04, Ch. 17]), which gives global information about the oscillations or fluctuations of a measure

at any particular scale, but which gives no information about the behaviour of a measure at a

point. Proposition 5.17 and its corollary suggest that the local fractal zeta functions are promising

complementary tools, as they give information about the oscillations of a measure on a pointwise

basis.
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Chapter 6

Future Directions

6.1 Self-similar measures

When µp is a self-similar measure corresponding to a SSIFS which satisfies the open set condition,

Proposition 5.17 gives an explicit computation of the principle (leftmost real) local complex dimen-

sion of a fixed point of any of the maps composing the IFS. In the setting of this proposition, the

local tube zeta function is given by

ζ̃ loc
x,Ω(s) =

ϑ(s)
1 − qc−s ,

where ϑ is an entire function, explicitly given on an open left half-plane by the integral

∫ r

cr

t−s−1µp(B(x, t)) dt.

Intuition suggests that ϑ should not vanish on the set

{s ∈ C | 1 − qc−s},
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and that the complex dimensions should be precisely

P(ζ̃ loc
x,Ω) =

log(q)
log(c) + %

2πZ

log(c) .

Verification of this intuition is currently open.

Question 6.1. In the setting of Proposition 5.17, can it be shown that

|ϑ(ωk)| =
����
∫ r

cr

t−ωk−1µp(B(x, t)) dt

���� > 0

for all k ∈ Z, where

ωk =
log(q)
log(c) + %

2πk

log(c)?

Corollary 5.18 extends the result of Proposition 5.17 to the “rational points” of the attractor ofΦ.

It should be possible to extend the result to the remaining points of the attractor, but it is not clear

that a “naive” limiting argument is possible.

Question 6.2. Can the approach outlined in Corollary 5.18 and a limiting argument be combined in

order to obtain the full (fine) multifractal spectrum of the self-similar measure induced by a weighted

iterated function system satisfying the open set condition?

Finally, Proposition 5.17 and Corollary 5.18 depend on the open set condition in order to precisely

determine the measures of certain balls relative to their preimages under the mappings of the iterated

function system. This condition is required in order to ensure that there is a neighborhood of x

which has non-intersecting images under the IFS.

The open set condition is one of several separation conditions which have been studied in

the literature on self-similar and self-affine sets. Other separation conditions include the weak

separation property (which gives control over the monoidal structure of the system of functions; see

[LN99, Zer96]) and the finite type condition (which gives control over the number of image balls

which may appear in a bounded region; see [NW01]).
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Question 6.3. Can results parallel to those in Proposition 5.17 and Corollary 5.18 be obtained if

the open set condition is replaced with a weaker separation condition?

6.2 Spectrum and Geometry

The fractal zeta functions were originally introduced to study the Laplace operator on fractal harps,

i.e. bounded open subsets of the real line. In this setting, the geometric and spectral zeta functions

provide a language for describing the link between the geometry of a fractal harp and the spectrum

of the corresponding operator. For further discussion, see [Lap93,LvF13].

The connection between geometry and spectrum is less clear in higher dimensional Euclidean

settings. A brief overview of what is known is described by Lapidus et al. [LRZ̆16, §4.3.1]. In more

general metric spaces, the picture is even cloudier, though some results have been obtained. For

example, Lehrbäck and Tuominen [LT13] establish Hardy-type inequalities in certain homogeneous

metric spaces via fractal zeta functions.

A potential obstruction in the investigation of the relation between spectrum and geometry is that

many of the important tools used in the study of analysis and differential operators are essentially

local—continuity, differentiability, and homogeneity are all local properties, while many of the tools

used in fractal geometry—such as most notions of dimension—are essentially global.

Question 6.4. Can local fractal zeta functions be used to detect local “pathologies“ in spaces? For

example, finding solutions to differential equations is greatly complicated when the boundary of the

domain has cusps. How do the local fractal zeta functions see such cusps? Is there any relation

between the local complex dimensions at a cusp point and the spectrum of an operator acting on the

domain?

Related questions concern the behaviour of systems in domains with fractal boundary. For

example, Lapidus and Pang [LP95] observed that there are sequences of points along the boundary

of the von Koch domain (the open set in R2 bounded by the classical von Koch snowflake) along

which the magnitude of the gradient increases without bound—these sequences are related to “twist
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points” of the von Koch curve, which are discussed by Di Biase et al. [DBFU98]. These results are

explored numerically and visualized by Lapidus et al. [LNRG96].

Question 6.5. Is there a relation between the behaviour of local fractal zeta functions at twist points

and the behaviour of eigenfunctions the Laplace equation with Dirichlet conditions on the von Koch

domain?

6.3 Embedding problems

What is now known as the Assouad dimension was first studied in the early 20th Century by

Minkowski and Bouligand. At the time, it received little attention, as it lacks many of the desirable

properties of other notions of dimension, such as countable stability or bounds on the dimension of

Cartesian products in terms of the dimension of the factors. The notion was reintroduced by As-

souad [Ass79] in relation to certain embedding problems: he shows that the image of a homogenous

set under a bi-Lipschitz map is homogenous, and under certain conditions, a homogenous subset of

an infinite-dimensional Hilbert space may be embedded into a finite dimensional Euclidean space

via a bi-Lipschitz map.

Related embedding results have been of interest over the last half-century. For example, suppose

that E is a subset of some Hilbert space and that

dimH(E − E) ≤ d < ∞,

where dimH denotes the Hausdorff dimension and E − E is the Minkowski difference, that is,

E − E = {x − y | x, y ∈ E}.

Mañé [Mañ81] proves that, under these hypotheses, a residual (comeager or of the second category,

in the sense of Baire) set of projections continuously embed E into Rd. In other words, if the set of

differences E −E is sufficiently regular, then E can be embedded into a finite dimensional Euclidean

space by a larger family of projections.
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Other more recent results follow along similar lines. Hunt and Kaloshin [HK99] show that if

dimMi(E − E) < d, then a prevalent set of projections continuously embed E into RD with Hölder

continuous inverse, where prevalence is a notion of density introduced by Hunt, Saur, and Yorke

[HSY92]. Olson and Robinson [OR10] prove that if dimAs(E − E) < d, then a prevalent set of

projections continuously embed E into Rd with Lipschitz inverse, up to a logarithmic correction.

Essentially, the means that if E is the infinite dimensional attractor of a dynamical system, but

dim(E − E) is finite (where dim is a suitable notion of dimension), then E may be embedded into a

finite dimensional space while preserving the dynamics of the system. Similar results are given in

[Ols02, Theorem 5.2] and [Rob11, Theorem 9.20].

A theme among these results is that the embeddability of a space E depends not on the dimension

of E itself, but on the Minkowski difference E − E . This suggests that spaces which are not

embeddable in a “nice” way may have additional structure—such as lower-dimensional geometric

oscillation—which is not being seen by traditional notions of dimension.

Question 6.6. Fractal zeta functions are more sensitive to various geometric structures than tradi-

tional notions of dimension. Can the complex dimensions of a space be used to refine or restate

embedding results such those described above? Can these embedding results be stated in terms of

properties of the spaces themselves, rather than their Minkowski differences?

6.4 Refining bounds on the abscissæ of convergence

Let (X, d, µ) be a metric space with µ a Radon measure, let x ∈ X , and fix a bounded open Ω ⊆ X

with µ(Ω) < ∞. In Section 5.2, it is shown that the integral defining the local distance zeta function

ζ loc
x,Ω

is absolutely convergent (in the sense of a Lebesgue integral) on a half-plane to the left of the

lower local dimension of the measure µ at x. It is also shown that the defining integral diverges on

a half-plane to the right of the upper local dimension of the measure µ at x.

If the upper and lower local dimensions of µ coincide at x, then the abscissa of convergence will

be the common value. In the case that the two do not coincide, then the location of the abscissa of

convergence is currently unknown.
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Question 6.7. If (X, d, µ) is an appropriate metric measure space and x ∈ X is such that

dimlocµ(x) < dimlocµ(x)

(that is, the local lower dimension of µ at x is strictly less than the upper local dimension), what more

can be said about the abscissa of convergence of the local fractal zeta functions ζ loc
x,Ω

and ζ̃ loc
x,Ω

? What

are the necessary and sufficient hypotheses under which the abscissa of convergence will coincide

with either the upper or lower local dimension of µ at x?

A similar question may be asked about the (global) fractal zeta functions ζE and ζ̃E : under

the hypotheses that the Minkowski dimension of E exists and is strictly smaller than the ambient

dimension, and that E has lower Minkowski content in that dimension, Theorem 3.17 asserts that

the abscissa of convergence will coincide with the abscissa of holomorphic continuation.

Question 6.8. If the hypotheses of Theorem 3.17 are weakened, what can be said? Are there any

examples of a set E for which dimMi(E) = D exists and MD(E) = 0 such that ζE extends to a

holomorphic function on a domain containing D? What are the necessary and sufficient hypotheses

under which the abscissæ of convergence and holomorphic continuation will coincide?

6.5 The non-archimedean (3,5)-adic Cantor dust

This section examines a “self-affine” subset of Q3 × Q5 with respect to the L∞ metric, i.e. that

given by

d(x, y) = max{|x1 − y1 |3, |x2 − y2 |5},

where x = (x1, x2) and y = (y1, y2), with x1, y1 ∈ Q3 and x2, y2 ∈ Q5. The measure on this

space is the natural product measure, denoted by µ. With respect to this metric and measure,

dimMe(Q3 ×Q5) = 2.

Informally, the goal is to consider a product of Cantor-like sets: one in Q3 with contraction

ratio 1/3, and one in Q5 with contraction ratio 1/5. This set can be realized as the attractor of a

self-affine IFS consisting of four maps that take Z3 × Z5 into the four “corners” of Z3 × Z5. More
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ϕ3(Z3 × Z5) ϕ4(Z3 × Z5)

ϕ1(Z3 × Z5) ϕ2(Z3 × Z5)

3Z3 1 + 3Z3 2 + 3Z3

5Z5

1 + 5Z5

2 + 5Z5

3 + 5Z5

4 + 5Z5

Figure 6.1: A diagrammatic depiction of the action of a the maps {ϕ j }4
j=1

on the setZ3×Z5 ⊆ Q3×Q5.

Note that this IFS satisfies the open set condition with U = Z3 ×Z5.

precisely, let A be the self-affine attractor of the system given by the four contraction mappings

ϕ j : Q3 ×Q5 → Q3 ×Q5, defined by

ϕ j(x) = Cx + b j,

where

C =
©­­«
3 0

0 5

ª®®¬
,

and the translations are

b1 = (0,0), b2 = (2,0), b3 = (0,4), and b4 = (2,4).

These maps are better understood graphically. For details, refer to Figure 6.1. Note that the choices

of translations are somewhat arbitrary—the essential requirement in the following discussion is that

the Cantor-like set obtained as the attractor of {ϕ1, ϕ2} is a “vertical” translation of the Cantor-like

set obtained as the attractor of {ϕ3, ϕ4}.
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For any set U ⊆ Q3 ×Q5, define

Φ(U) =
4⋃
j=1

ϕ j(U),

and note that A is the unique nonempty set such that Φ(A ) = A . Let Φn denote the n-fold

composition of Φ with itself, i.e. for any U ⊆ Q3 ×Q5,

Φn(U) := Φ ◦Φ ◦ · · · ◦ Φ︸             ︷︷             ︸
n times

(U),

with the convention that Φ0(U) = U. For each n ∈ N ∪ {0}, let An denote the n-th approximant

of A , given by

An := Φn(Z3 ×Z5).

Note that A0 = Z3 ×Z5. With this notation, the distance zeta function associated to A is

ζA (s) =
∫
Z3×Z5

d(x,A )s−2 dµ(x)

=

∫
A

d(x,A )s−2 dµ(x)︸                      ︷︷                      ︸
= 0, as µ(A ) = 0

+

∞∑
n=0

∫
AnrAn+1

d(x,A )s−2 dµ(x)

=

∞∑
n=0

∫
AnrAn+1

d(x,A )s−2 dµ(x) (6.5.1)

Thus giving an explicit formula for the distance zeta function is reduced to studying the function on

the sets An r An+1.

Observe that

An = Φ
n(Z3 ×Z5) =

⋃
|i |=n

ϕi(Z3 ×Z5),

where ϕi is the composition of maps in the IFS according to the word i. But

ϕn1 (Z3 ×Z5) = 3nZ3 × 5nZ5,
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3nZ3

5
n
Z

5

In

⊆ An+1 ⊆ An+1

⊆ An+1 ⊆ An+1

Rn

Rn

S0
nS1

n S1
nS2

n S2
n S2

n S2
n

... ... ... ... ... ... ... ...

Figure 6.2: One of the 4n−1 copies of 3nZ3 × 5nZ5 which make up An−1. The black regions form

a subset of An, while the light grey regions are sets where the “horizontal” distance to the attractor

is greater than the “vertical” distance. Observe that the sets labeled by Sk
n are subsets of the product

of a 3-adic Cantor string and the “interval” In ⊆ Z5.

and if | i | = n, then ϕi(Z3 × Z5) is a translation of ϕn
1
(Z3 × Z5). Hence An consists of 4n identical

copies of 3nZ3 × 5nZ5, and so

An r An+1

is the set An with four copies of 3n+1Z3 × 5n+1Z5 removed from the “corners.” As such, An r An+1

may be understood as the disjoint union of 4n copies of 3nZ3 × 5nZ5, less the four “corners.”

The set An r An+1 can be further decomposed into regions where the distance to the attractor is

constant (and equal to either a power of 3, or a power of 5). To explicitly describe this decomposition,

begin by defining the “interval” In as

In :=

3⋃
j=1

(
5n+1Z3 + j

)
.

Let Rn = (An r An+1) r (3nZ3 × In), and note that if x ∈ Rn, then d(x,A ) = 3−n. Finally, let

Sk
n =

{
x ∈ In × 3nZ3

��� d(x,A ) = 3−(n+k)
}
.
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Set (see Fig. 6.2) Distance to A No. of Rect. Vol. of Each Rect.

Rn 3−n 2 15−(n+1)

S0
n 3−n 20 · 3 · 50 15−(n+1)

S1
n 3−(n+1) 21 · 3 · 51 15−(n+2)

S2
n 3−(n+2) 22 · 3 · 52 15−(n+3)

...
...

...

Sk
n 3−(n+k) 2k · 3 · 5k 15−(n+k+1)

...
...

...

S
⌊nℓ⌋
n 3−(n+ ⌊nℓ⌋) 2 ⌊nℓ⌋ · 3 · 5 ⌊nℓ⌋ 15−(n+ ⌊nℓ⌋+1)

(3−nZ3 × In) r
⋃

k Sk
n 5−n 2 ⌊nℓ⌋+1 · 3 · 5 ⌊nℓ⌋ 15−(n+ ⌊nℓ⌋+1)

Table 6.1: The set 3nZ3 × 5nZ5 r An+1 is decomposed into rectangles in which the distance to the

attractor is constant (with respect to the L∞ metric).

Observe that if k is sufficiently large, then 3−(n+k) < 5−n. For any such k, the set Sk
n = �. Let kn

denote the greatest integer such that S
kn
n , �. Then

3−(n+kn+1) < 5−n < 3−(n+kn ) =⇒ 1

3

(
5

3

)n
< 3kn <

(
5

3

)n

=⇒ n

(
log(5)
log(3) − 1

)
− 1 < kn < n

(
log(5)
log(3) − 1

)
︸          ︷︷          ︸

=:ℓ

=⇒ kn = ⌊nℓ⌋.

Finally, if x ∈ (3−nZ3 × In) r
⋃

k Sk
n , then d(x,A ) = 5−n. The details of this decomposition are

shown in Figure 6.2.

The set S0
n consists of three rectangles of the form [3n+1Z3 + 1] × [5n+1Z5 + j], where j ranges

over {1,2,3}. Each of these rectangles has volume 15−(n+1) , from which it follows that

∫
S0
n

d(x,A )s−2 dµ(x) =
∫
S0
n

3−n(s−2) dµ(x)

= 3−n(s−2) vol(S0
n)

= 3−n(s−2)[3 · 15−(n+1)].
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Thus to compute
∫

d(x,A )s−2 over the set shown in Figure 6.2, it is sufficient to determine the

volume of each set on which the distance is constant. Since each of these sets can be further

decomposed into some number of rectangles each having volume 15−(n+k) for some k, a complete

description of these decompositions is sufficient. These data are summarized in Table 6.1, leading

to an explicit formulation of the distance zeta function, as described in Figure 6.3.

Treat the sums S1, S2, and S3 formally, ignoring issues of convergence. Beginning with S1,

S1(s) =
∞∑
n=0

(
4

3s−1 · 5

)n
=

3s−1 · 5
3s−1 · 5 − 4

, (6.5.2)

where equality holds on the open right half-plane on which the series converges absolutely. Hence

S1(s), which a priori defines a holomorphic function on the open half-plane

{
ℜ(s) > 2 log(2) − log(5)

log(3) + 1

}
,

extends analytically to the mentire function given in (6.5.2). This extended function has poles at

s ∈
{

2 log(2) − log(5)
log(3) + 1 + %

2kπ

log(3)

���� k ∈ Z

}
.

To analyze S2 and S3, use the Fourier series expansion of b−{nℓ }, given by

b−{nℓ } =
∑
m∈Z

αm exp(2π%mnℓ),

where the Fourier coefficients are

αm = ℓ

∫ 1
ℓ

0

exp (−t(ℓ log(b) + 2π%mℓ)) dt

= − ℓ

ℓ log(b) + 2π%mℓ
[exp(− log(b) − 2π%m) − 1]

=

1

log(b) + 2π%m

[
1 − 1

b
exp(−2π%m)

]

=

1

log(b) + 2π%m

b − 1

b
. (since e−2π%m

= 1∀m ∈ Z)
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ζA (s) =
∞∑
n=0

∫
AnrAn+1

d(x,A )s−2 dµ(x)

=

∞∑
n=0

[
4n

∫
3nZ3×5nZ5rAn+1

d(x,A )s−2 dµ(x)
]

=

∑
n=0

[∫
Rn

3−n(s−2) dµ(x) +
[ ⌊nℓ⌋∑
k=0

∫
Sk
n

3−(n+k)(s−2) dµ(x)
]
+

∫
(3−n×In)r

⋃
k Sk

n

5−n(s−2) dµ(x)
]

=

∞∑
n=0

4n

[
3−n(s−2) · 2 · 15−(n+1)

+

⌊nℓ⌋∑
k=0

[
3−(n+k)(s−2) [2k · 3 · 5k

]
15−(n+k+1)

]
+ 5−n(s−2)

[
2 ⌊nℓ⌋+1 · 3 · 5 ⌊nℓ⌋

]
15−(n+ ⌊nℓ⌋+1)

]

=

∞∑
n=0

[
2

15

[
4

3s−1 · 5

]n
+

1

5

[
4

3s−1 · 5

]n ⌊nℓ⌋∑
k=0

[
2

3s−1

]k
+

2

5

[
4

3 · 5s−1

]n [
2

3

] ⌊nℓ⌋]

=

∞∑
n=0

[
2

15

[
4

3s−1 · 5

]n
+

1

5

[
4

3s−1 · 5

]n [
1

3s−1 − 2

] [
3s−1 − 2

[
2

3s−1

]nℓ [
2

3s−1

]−{nℓ }]
+

2

5

[
2ℓ+2

3ℓ+1 · 5s−1

]n [
2

3

]−{nℓ }]

=

∞∑
n=0

[ [
2

15
+

3s−1

5(3s−1 − 2)

] [
4

3s−1 · 5

]n
−

[
2

5(3s−1 − 2)

] [
2ℓ+2

3(ℓ+1)(s−1) · 5

]n [
2

3s−1

]−{nℓ }
+

2

5

[
2ℓ+2

3ℓ+1 · 5s−1

]n [
2

3

]−{nℓ }]

=

[
2

15
+

3s−1

5(3s−1 − 2)

]
︸                    ︷︷                    ︸

=: f1(s)

∞∑
n=0

[
4

3s−1 · 5

]n
︸             ︷︷             ︸

=:S1(s)

−
[

2

5(3s−1 − 2)

]
︸            ︷︷            ︸

=: f2(s)

∞∑
n=0

[
2ℓ+2

3(ℓ+1)(s−1) · 5

]n [
2

3s−1

]−{nℓ }
︸                                      ︷︷                                      ︸

=:S2(s)

+

2

5

∞∑
n=0

[
2ℓ+2

3ℓ+1 · 5s−1

]n [
2

3

]−{nℓ }
︸                              ︷︷                              ︸

=:S3(s)

Figure 6.3: The details of the computation of the distance zeta function.
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For any n ∈ Z,

b−{nℓ } =
b − 1

b

∑
m∈Z

exp(2π%mnℓ)
log(b) + 2π%mℓ

. (6.5.3)

Using (6.5.3) to expand S2(s) gives

S2(s) =
∞∑
n=0

(
2ℓ+2

3(ℓ+1)(s−1) · 5

)n (
2

3s−1

)−{nℓ }
(6.5.4)

=

∞∑
n=0


(

2ℓ+2

3(ℓ+1)(s−1) · 5

)n (
2

3s−1 − 1

2
3s−1

) ∑
m∈Z

exp (2π%mnℓ)
log

(
2

3s−1

)
+ 2π%m


=

2 − 3s−1

2

∞∑
n=0

∑
m∈Z

[
2ℓ+2 exp(2π%mℓ)

3(ℓ+1)(s−1) · 5

]n 
1

log
(

2
3s−1

)
+ 2π%m


?
=

2 − 3s−1

2

∑
m∈Z

[
3(ℓ+1)(s−1) · 5

3(ℓ+1)(s−1) · 5 − 2ℓ+2 exp(2π%mℓ)

]
1

log
(

2
3s−1

)
+ 2π%m


. (6.5.5)

The series in (6.5.4) is absolutely convergent—and therefore holomorphic—on the open half-plane

{
ℜ(s) > log(2)

log(3) +
log(2)
log(5)

}
.

The purported identity at (6.5.5) is obtained by exchanging the order of summation and simplifying

the resulting geometric series. It is important to note that this exchange cannot be justified by the

usual analytic tricks (e.g. the Fubini-Tonelli theorem).

Question 6.9. Is there any framework under which the exchange of summation can be justified? For

example, can the series be understood in the setting of distributions or generalized functions (in the

sense of Schwartz [Sch66])? or in the setting of hyperfunctions (as outlined by Graf [Gra10])?

An answer to this question is of interest as, assuming that the exchange in the order of summation

can be justified, the computation proceeds by observing for each fixed value of m, the summand

in (6.5.5) extends to a mentire function with poles at

s ∈
{

log(2)
log(3) +

log(2)
log(5) + %

2π(ℓm + k)
log(5)

���� k ∈ Z

}
∪

{
log(2)
log(3) + 1 − %

2πm

log(3)

}
.
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Figure 6.4: The potential poles and other singularities of ζA (s). A priori ζA (s) converges absolutely

to the right of the abscissa of convergence (dashed). Assuming that the computations can be

somehow justified, ζA possesses a dense set of singularities along the line ℜ(s) = log3(2)+ log5(2),
and cannot be analytically continued to any open domain containing this line.

As there is a term in the series corresponding to each m ∈ Z, the function S2(s) has a set of

singularities contained in

{
log(2)
log(3) +

log(2)
log(5) + %

2π(ℓm + k)
log(5)

���� k,m ∈ Z

}
. (6.5.6)

Since ℓ is irrational, the set {2π(ℓm + k) | k,m ∈ Z} is dense in R. Hence if this set describes the

singularities of S2(s), then this series does not extend to a meromorphic function on any domain

strictly containing the half-plane of convergence. On the other hand, the potential singularities on

the line {ℜ(s) = log3(2) + 1} are exactly canceled by the zeros of the leading term (though f2(s)

does contribute poles, as described below).

The last series can be addressed by a similar (formal) computation, rendering

S3(s) =
∞∑
n=0

(
2ℓ+2

3ℓ+1 · 5s−1

)n (
2

3

)−{nℓ }

= −1

2

∑
m∈Z

[
3ℓ+1 · 5s−1

3ℓ+1 · 5s−1 − 2ℓ+2 exp(2π%mℓ)

] 
1

log
(

2
3

)
+ 2π%m


, (6.5.7)
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which again converges absolutely (and is therefore holomorphic) on the open right half-plane

{
ℜ(s) > log(2)

log(3) +
log(2)
log(5)

}
,

with (potentially) a dense set of singularities (of the form described at (6.5.6)) on the abscissa of

convergence.

Finally, note that both f1(s) and f2(s) are mentire, with poles at

s ∈ log(2)
log(3) + 1 + %

2πZ

log(3) .
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[LL08] Michel L. Lapidus and Hùng Lũ’, Nonarchimedean Cantor set and string, Journal of Fixed Point Theory and

Applications 3 (2008), no. 1, 181–190, DOI 10.1007/s11784-008-0062-9.

[LL09] , Self-similar p-adic fractal strings and their complex dimensions, p-Adic Numbers, Ultrametric

Analysis, and Applications 1 (2009), 167–180, DOI https://doi.org/10.1134/S2070046609020083.

[LM95] Michel L. Lapidus and Helmut Maier, The Riemann Hypothesis and Inverse Spectral Problems for Fractal
Strings, Journal of the London Mathematical Society 52 (1995), no. 1, 15-34, DOI 10.1112/jlms/52.1.15.

[Lap93] Michel L. and Pomerance Lapidus Carl, The Riemann Zeta-Function and the One-Dimensional Weyl-Berry
Conjecture for Fractal Drums, Proceedings of the London Mathematical Society 3 (1993), no. 1, 41–69, DOI

10.1112/plms/s3-66.1.41.

[LvF13] Michel L. Lapidus and Machiel van Frankenhuijsen, Fractal Geometry, Complex Dimensions and Zeta
Functions: Geometry and Spectra of Fractal Strings, 2nd ed., Springer, New York, 2013.

[LRZ̆16] Michel L. Lapidus, Goran Radunović, and Darko Z̆ubrinić, Fractal Zeta Functions and Fractal Drums:
Higher-Dimensional Theory of Complex Dimensions, Springer, New York, 2016.

[LP95] Michel L. Lapidus and Michael M. H. Pang, Eigenfunctions of the Koch snowflake domain, Communications

in mathematical physics 172 (1995), no. 2, 359–376.

[LNRG96] Michel L. Lapidus, J. W. Neuberger, Robert J. Renka, and Cheryl A. Griffith, Snowflake harmonics and
computer graphics: numerical computation of spectra on fractal drums, International Journal of Bifurcation

and Chaos 6 (1996), no. 07, 1185–1210.

[LR09] Michel L. Lapidus and John A. Rock, Towards zeta functions and complex dimensions of multifractals,
Complex Variables and Elliptic Equations 54 (2009), no. 6, 545–559.

[Lap09] Michel L and Lévy-Véhel Lapidus Jacques and Rock, Fractal strings and multifractal zeta functions, Letters

in Mathematical Physics 88 (2009), no. 1-3, 101–129.

[LN99] Ka-Sing Lau and Sze-Man Ngai, Multifractal measures and a weak separation property, Adv. Math. 141

(1999), 45–96.

[LT13] Juha Lehrbäck and Heli Tuominen, A note on the dimensions of Assouad and Aikawa, J. Math. Soc. Japan

65 (2013), no. 2, 343–356, DOI 10.2969/jmsj/06520343.

[Mac11] John M. Mackay, Assouad Dimension of Self-Affine Carpets, Conform. Geom. Dyn. 15 (2011), 177–187.

[Mañ81] Ricardo Mañé, On the Dimension of the Compact Invariant Sets of Certain Non-Linear Maps (David Rand

and Lai-Sang Young, eds.), Lecture Notes in Mathematics, vol. 898, Springer Berlin Heidelberg, 1981.

[McM84] Curt McMullen, The Hausdorff dimension of general Sierpński carpets, Nagoya Mathematical Journal 96

(1984), 1–9.

[NW01] Sze-Man Ngai and Yang Wang, Hausdorff dimension of self-similar sets with overlaps, Journal of the London

Mathematical Society 63 (2001), no. 3, 655–672.

[Ols02] Eric J. Olson, Bouligand Dimension and Almost Lipschitz Embeddings, Pacific J. Math. 202 (2002), no. 2,

459–474.

[OR10] Eric J. Olson and James C. Robinson, Almost Bi-Lipschitz Embeddings and Almost Homogeneous Sets, Trans.

Amer. Math. Soc. 362 (2010), 145–168.

[Rob13] A.M. Robert, A Course in p-adic Analysis, Graduate Texts in Mathematics, Springer New York, 2013.

[Rob11] James C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge University Press, Cambridge,

2011.

[Roc17] John A. Rock, Zeta functions, complex dimensions of fractal strings and multifractal analysis of mass
distributions, Ph.D. thesis, UC Riverside, 2017.

[Ser12] J. P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, Springer New York, 2012.

[Sch66] Laurent Schwartz, Théorie des Distributions, Hermann, Paris, 1966.

[Sim15] Barry Simon, Basic Complex Analysis. Part 2A, A Comprehensive Course In Analysis, American Mathemat-

ical Society, 2015.

[JLVFM10] Jacques Lévy Véhel and Franklin Mendivil, Multifractal and higher-dimensional zeta functions, Nonlinearity

24 (2010), no. 1, 259–276, DOI 10.1088/0951-7715/24/1/013.

121



[Wat17] Sean Watson, Fractal zeta functions: to Ahlfors spaces and beyond, Ph.D. thesis, UC Riverside, 2017.

[Zer96] Martin P. W. Zerner, Weak separation properties for self-similar sets, Proc. Amer. Math. Soc. 124 (1996),

no. 11, 3529–3539.

122


	Signatures Page
	Acknowledgements
	Dedication
	Abstract
	List of Figures
	List of Symbols and Notation
	Preface
	Introduction
	Can one hear the shape of a drum?
	Fractal Zeta Functions

	Background
	Pushforward measures
	Notions of dimension
	Iterated function systems and self-similar measures
	Iterated function systems
	Self-similar measures

	Mentire functions

	Fractal Zeta Functions
	The distance zeta function
	The tube zeta function
	Analyticity of the fractal zeta functions
	Relative fractal drums

	Examples in p-adic Settings
	The p-adic numbers
	An analytic construction of Qp
	An algebraic construction of Qp
	Key properties of Qp
	Vector spaces over Qp

	Examples in Qp
	Singleton sets in Qp
	Balls in Qp
	A self-similar measure on Z2

	Examples in Vector Spaces over Qp
	Self-similar sets with contraction ratio p
	General self-similar sets
	A self-affine example

	Comparison with Past Results

	Local Zeta Functions and Local Dimensions
	A brief historical note
	Local zeta functions
	Examples

	Future Directions
	Self-similar measures
	Spectrum and Geometry
	Embedding problems
	Refining bounds on the abscissæ of convergence
	The non-archimedean (3,5)-adic Cantor dust

	References

