Local Fractal Zeta Functions

Alexander M. Henderson

University of California, Riverside

Joint Mathematical Meetings Special Session on Fractal Geometry, Dynamical Systems, and Applications 18 January 2020

UCRIVERSITY OF CALIFORNIA

Overview

Geometric Zeta Functions in \mathbb{R}^n Definitions

Key properties

Local Zeta Functions

The problem Definitions Key properties

References

Geometric Zeta Functions in \mathbb{R}^n

Geometric Zeta Functions in \mathbb{R}^n : Definitions

Definition

Let $E \subseteq \mathbb{R}^n$ be bounded, and for each $\delta > 0$, let

$$E_{\delta} := \{ x \in \mathbb{R}^n \mid d(x, E) < \delta \}$$

denote a δ -neighborhood of E. For any $\delta > 0$, the distance zeta function corresponding to E is the complex function

$$\zeta_E(s) := \int_{E_\delta} d(x, E)^{s-n} \, \mathrm{d}x,$$

and the **tube zeta function** corresponding to E is the complex function

$$\tilde{\zeta}_E(s) := \int_0^\delta t^{s-n-1} m(E_t) \,\mathrm{d}t,$$

where $m(E_t)$ denotes the Lebesgue measure of E_t .

Geometric Zeta Functions in \mathbb{R}^n : Key properties

► The following functional relation holds whenever both geometric zeta functions are defined:

$$\zeta_E(s) = \delta^{s-n} m(E_\delta) + (n-s)\tilde{\zeta}_E(s).$$

- ▶ Both ζ_E and $\tilde{\zeta}_E$ appear to depend on a parameter δ . This dependence is inessential.
- ► The integrals defining the geometric zeta functions converge absolutely on the open right half-plane

$$\left\{\Re(s) > \overline{\dim}_{\mathrm{Mi}}(E)\right\},\,$$

where $\overline{\dim}_{Mi}(E)$ denotes the upper Minkowski dimension of E. These integrals will diverge on the complementary open left half-plane.

• If ζ_E can be meromorphically extended to an open region containing the closure of the half-plane of convergence, the poles of the extension are called the (visible) complex dimensions of E. Under relatively mild hypotheses, $\overline{\dim}_{Mi}(E)$ will be a complex dimension of E.

See Lapidus et. al, *Fractal Zeta Functions and Fractal Drums* [LRŽ17] for further details.

Local Zeta Functions

Local Zeta Functions: The problem

Question

Let (X, d, μ) be a metric measure space with underlying set X, metric d, and Radon measure μ . Is there a natural generalization of geometric zeta functions which can be used to study the geometry of X?

It is tempting to parallel the Euclidean theory, and define a distance zeta function by

$$\zeta_E(s) := \int_{E_{\delta}} d(x, E)^{s-Q} \,\mathrm{d}\mu(x),$$

where E is a (totally) bounded subset of X, and Q corresponds to some notion of "ambient dimension", i.e. the dimension of X.

Problems:

- ▶ The "ambient dimension" is poorly characterized.
- ▶ The geometry of a space is described via extrinsic measurements.

Local Zeta Functions: Definitions

An Approach:

"Probe" the space with local zeta functions, then piece the local information together to describe global features.

Definition

Let $X = (X, d, \mu)$ be a complete metric measure space with Radon measure μ . Let $x \in X$ and fix a bounded, open $\Omega \subseteq X$ with $\mu(\Omega) < \infty$ and $x \in \Omega$. The **local distance zeta function** at x relative to Ω is defined as

$$\zeta^{\rm loc}_{x,\Omega}(s):=\int_\Omega d(y,x)^{-s}\,{\rm d}\mu(y).$$

The local tube zeta function a x relative to Ω is defined as

$$\tilde{\zeta}_{x,\Omega}^{\text{loc}}(s) := \int_0^{\text{diam}(\Omega)} t^{-s-1} \mu(B(x,t) \cap \Omega) \, \mathrm{d}t.$$

Local Zeta Functions: Key properties

Theorem (H.)

The following functional relation holds whenever both local zeta functions are defined:

$$\zeta_{x,\Omega}^{\mathrm{loc}}(s) = \mathrm{diam}(\Omega)^{-s} \mu(\Omega) + s \tilde{\zeta}_{x,\Omega}^{\mathrm{loc}}(s)$$

Theorem (H.)

The integrals defining the local zeta functions are (absolutely) convergent on the open left half-plane $\{\Re(s) < \underline{\dim}_{\mathrm{loc}}\mu(x)\}$, and diverge on the open right half-plane $\{\Re(s) > \overline{\dim}_{\mathrm{loc}}\mu(x)\}$, where

$$\underline{\dim}_{\mathrm{loc}}\mu(x) := \liminf_{r\searrow 0} \frac{\log(\mu(B(x,r)))}{\log(r)} \quad and \quad \overline{\dim}_{\mathrm{loc}}\mu(x) := \limsup_{r\searrow 0} \frac{\log(\mu(B(x,r)))}{\log(r)}$$

denote the lower and upper local dimensions of μ at x. See Falconer [Fal04] for a discussion of the local dimension of a measure.

Local Zeta Functions: Key properties

Local Zeta Functions: Key properties

Definition

Let $X = (X, d, \mu)$ be a complete metric measure space with Radon measure μ , and let $q \ge 0$. The measure μ is said to be *q*-homogeneous if there is a constant M > 0 such that

$$\frac{\mu(B(x,r))}{\mu(B(\xi,\rho))} \le M\left(\frac{r}{\rho}\right)^{\alpha}$$

for all $0 < \rho < r \le 1$, $x \in X$, and $\xi \in B(x, r)$.

Theorem (H.)

Let $x \in X$, suppose that $\dim_{\text{loc}} \mu(x)$ exists, and suppose that there is some neighborhood Ω of x such that the restriction of μ to Ω is D-homogeneous. Then

$$\lim_{\sigma \nearrow D} \zeta_{x,\Omega}^{\rm loc}(\sigma) = +\infty.$$

Under these hypotheses, the local zeta functions cannot be extended to a function which is analytic on any half-plane larger than $\{\Re(s) < D\}$.

Questions?

References

- [Fal04] Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley, 2004.
- [LRŽ17] Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Fractal Zeta Functions and Fractal Drums. Springer, 2017.