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Geometric Zeta Functions in Rn: Definitions

Definition

Let E ⊆ Rn be bounded, and for each δ > 0, let

Eδ := {x ∈ Rn | d(x,E) < δ}

denote a δ-neighborhood of E. For any δ > 0, the distance zeta function
corresponding to E is the complex function

ζE(s) :=

∫
Eδ

d(x,E)s−n dx,

and the tube zeta function corresponding to E is the complex function

ζ̃E(s) :=

∫ δ

0
ts−n−1m(Et) dt,

where m(Et) denotes the Lebesgue measure of Et.

4 / 13



Geometric Zeta Functions in Rn: Key properties

I The following functional relation holds whenever both geometric zeta functions
are defined:

ζE(s) = δs−nm(Eδ) + (n− s)ζ̃E(s).

I Both ζE and ζ̃E appear to depend on a parameter δ. This dependence is
inessential.

I The integrals defining the geometric zeta functions converge absolutely on the
open right half-plane {

<(s) > dimMi(E)
}
,

where dimMi(E) denotes the upper Minkowski dimension of E. These integrals
will diverge on the complementary open left half-plane.

I If ζE can be meromorphically extended to an open region containing the closure
of the half-plane of convergence, the poles of the extension are called the (visible)
complex dimensions of E. Under relatively mild hypotheses, dimMi(E) will
be a complex dimension of E.

See Lapidus et. al, Fractal Zeta Functions and Fractal Drums [LRŽ17] for further
details.
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Local Zeta Functions: The problem

Question

Let (X, d, µ) be a metric measure space with underlying set X, metric d, and Radon
measure µ. Is there a natural generalization of geometric zeta functions which can
be used to study the geometry of X?

It is tempting to parallel the Euclidean theory, and define a distance zeta function by

ζE(s) :=

∫
Eδ

d(x,E)s−Q dµ(x),

where E is a (totally) bounded subset of X, and Q corresponds to some notion of
“ambient dimension”, i.e. the dimension of X.

Problems:

I The “ambient dimension” is poorly characterized.

I The geometry of a space is described via extrinsic measurements.
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Local Zeta Functions: Definitions

An Approach:
“Probe” the space with local zeta functions, then piece the local information together
to describe global features.

Definition

Let X = (X, d, µ) be a complete metric measure space with Radon measure µ. Let
x ∈ X and fix a bounded, open Ω ⊆ X with µ(Ω) < ∞ and x ∈ Ω. The local
distance zeta function at x relative to Ω is defined as

ζ loc
x,Ω(s) :=

∫
Ω
d(y, x)−s dµ(y).

The local tube zeta function a x relative to Ω is defined as

ζ̃ loc
x,Ω(s) :=

∫ diam(Ω)

0
t−s−1µ(B(x, t) ∩ Ω) dt.
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Local Zeta Functions: Key properties

Theorem (H.)

The following functional relation holds whenever both local zeta functions are defined:

ζ loc
x,Ω(s) = diam(Ω)−sµ(Ω) + sζ̃ loc

x,Ω(s)

Theorem (H.)

The integrals defining the local zeta functions are (absolutely) convergent on the
open left half-plane {<(s) < dimlocµ(x)}, and diverge on the open right half-plane{
<(s) > dimlocµ(x)

}
,where

dimlocµ(x) := lim inf
r↘0

log(µ(B(x, r)))

log(r)
and dimlocµ(x) := lim sup

r↘0

log(µ(B(x, r)))

log(r)

denote the lower and upper local dimensions of µ at x. See Falconer [Fal04] for a
discussion of the local dimension of a measure.
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Local Zeta Functions: Key properties

Definition

Let X = (X, d, µ) be a complete metric measure space with Radon measure µ, and
let q ≥ 0. The measure µ is said to be q-homogeneous if there is a constant M > 0
such that

µ(B(x, r))

µ(B(ξ, ρ))
≤M

(
r

ρ

)q
for all 0 < ρ < r ≤ 1, x ∈ X, and ξ ∈ B(x, r).

Theorem (H.)

Let x ∈ X, suppose that dimloc µ(x) exists, and suppose that there is some neighbor-
hood Ω of x such that the restriction of µ to Ω is D-homogeneous. Then

lim
σ↗D

ζ loc
x,Ω(σ) = +∞.

Under these hypotheses, the local zeta functions cannot be extended to a function
which is analytic on any half-plane larger than {<(s) < D}.
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Questions?
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