The Complex Dimensions of Self-Similar Subsets of p-adic Product Spaces

Alexander M. Henderson
University of California Riverside
Graduate Student Seminar
2 June 2017

Outline

Definitions \& Notation

Homogeneous measures
The distance zeta function
p-adic spaces
Iterated function systems on \mathbb{Q}_{p}^{Q}
Results \& Examples
Self-similar sets
3-adic Cantor dust
Fibonacci attractors
A McMullen carpet analog
Selected Bibliography

Definitions \& Notation

Definitions \& Notation: Homogeneous measures

Let (X, d, μ) be a complete, separable metric measure space such that

$$
0<\mu(B(x, r))<\infty
$$

for all $x \in X$ and $r>0$. Let $A \subseteq X$.

Definitions \& Notation: Homogeneous measures

Let (X, d, μ) be a complete, separable metric measure space such that

$$
0<\mu(B(x, r))<\infty
$$

for all $x \in X$ and $r>0$. Let $A \subseteq X$.

Definition

We say that μ is q-homogeneous on A if there is some constant $M>0$ such that

$$
\frac{\mu(B(x, r))}{\mu(B(\xi, \rho))} \leq M\left(\frac{r}{\rho}\right)^{q}
$$

for all $0<\rho<r \leq \operatorname{diam}(A)$, all $x \in A$, and all $\xi \in B(x, r)$.

Definitions \& Notation: Homogeneous measures

Let (X, d, μ) be a complete, separable metric measure space such that

$$
0<\mu(B(x, r))<\infty
$$

for all $x \in X$ and $r>0$. Let $A \subseteq X$.

Definition

We say that μ is q-homogeneous on A if there is some constant $M>0$ such that

$$
\frac{\mu(B(x, r))}{\mu(B(\xi, \rho))} \leq M\left(\frac{r}{\rho}\right)^{q}
$$

for all $0<\rho<r \leq \operatorname{diam}(A)$, all $x \in A$, and all $\xi \in B(x, r)$. The measure theoretic Assouad dimension of A is

$$
\operatorname{dim}_{\mathrm{As}}(A):=\inf \{q \geq 0 \mid \mu \text { is } q \text {-homogeneous on } A\} .
$$

Definitions \& Notation: The distance zeta function

Definition

Suppose that $\operatorname{dim}_{\text {As }}(X)=Q$ and that A is a bounded subset of X. For $\delta>0$, define

$$
A_{\delta}:=\{x \in X \mid d(x, A) \leq \delta\}
$$

Definitions \& Notation: The distance zeta function

Definition

Suppose that $\operatorname{dim}_{\text {As }}(X)=Q$ and that A is a bounded subset of X. For $\delta>0$, define

$$
A_{\delta}:=\{x \in X \mid d(x, A) \leq \delta\} .
$$

The distance zeta function associated to A is given by

$$
\zeta_{A}(s)=\zeta_{A, A_{\delta}}(s):=\int_{A_{\delta}} d(x, A)^{s-Q} \mathrm{~d} \mu(x)
$$

Definitions \& Notation: The distance zeta function

Definition

Suppose that $\operatorname{dim}_{\mathrm{As}}(X)=Q$ and that A is a bounded subset of X. For $\delta>0$, define

$$
A_{\delta}:=\{x \in X \mid d(x, A) \leq \delta\} .
$$

The distance zeta function associated to A is given by

$$
\zeta_{A}(s)=\zeta_{A, A_{\delta}}(s):=\int_{A_{\delta}} d(x, A)^{s-Q} \mathrm{~d} \mu(x)
$$

Under relatively mild hypotheses on A, the integral above will diverge at - but be absolutely convergent to the right of - the upper Minkowski dimension of A.

Definitions \& Notation: The distance zeta function

Definition

Suppose that $\operatorname{dim}_{\mathrm{As}}(X)=Q$ and that A is a bounded subset of X. For $\delta>0$, define

$$
A_{\delta}:=\{x \in X \mid d(x, A) \leq \delta\} .
$$

The distance zeta function associated to A is given by

$$
\zeta_{A}(s)=\zeta_{A, A_{\delta}}(s):=\int_{A_{\delta}} d(x, A)^{s-Q} \mathrm{~d} \mu(x)
$$

Under relatively mild hypotheses on A, the integral above will diverge at-but be absolutely convergent to the right of - the upper Minkowski dimension of A.

Definition

Suppose that $\zeta_{A}(s)$ can be meromorphically extended to a (strictly) larger domain. Then the complex dimensions of A, denoted $\mathscr{P}(A)$, are the poles of this extension. That is

$$
\mathscr{P}(A):=\left\{\omega \in \mathbb{C} \mid \omega \text { is a pole of } \zeta_{A}(s)\right\} .
$$

Definitions \& Notation: p-adic spaces

Let p be a fixed prime number.

Definitions \& Notation: p-adic spaces

Let p be a fixed prime number.

Definition

Let $r \in \mathbb{Q}$. The p-adic absolute value of r is given by

$$
|r|_{p}:=p^{-n}
$$

where n is the unique integer such that there are $a, b \in \mathbb{Z}$ relatively prime to p with $r=p^{n} \frac{a}{b}$.

Definitions \& Notation: p-adic spaces

Let p be a fixed prime number.

Definition

Let $r \in \mathbb{Q}$. The p-adic absolute value of r is given by

$$
|r|_{p}:=p^{-n},
$$

where n is the unique integer such that there are $a, b \in \mathbb{Z}$ relatively prime to p with $r=p^{n} \frac{a}{b}$.

Definition

The p-adic numbers, denoted \mathbb{Q}_{p}, are the metric completion of \mathbb{Q} with respect to the metric induced by the p-adic abolute value.

Definitions \& Notation: p-adic spaces

Let p be a fixed prime number.

Definition

Let $r \in \mathbb{Q}$. The p-adic absolute value of r is given by

$$
|r|_{p}:=p^{-n},
$$

where n is the unique integer such that there are $a, b \in \mathbb{Z}$ relatively prime to p with $r=p^{n} \frac{a}{b}$.

Definition

The p-adic numbers, denoted \mathbb{Q}_{p}, are the metric completion of \mathbb{Q} with respect to the metric induced by the p-adic abolute value. The p-adic integers, denoted \mathbb{Z}_{p}, are elements of the "dressed" unit ball in \mathbb{Q}_{p}, i.e.

$$
\mathbb{Z}_{p}:=B_{\leq}(0,1)=\left\{\left.x \in \mathbb{Q}_{p}| | x\right|_{p} \leq 1\right\} .
$$

Definitions \& Notation: p-adic spaces

Let p be a fixed prime number.

Definition

Let $r \in \mathbb{Q}$. The p-adic absolute value of r is given by

$$
|r|_{p}:=p^{-n}
$$

where n is the unique integer such that there are $a, b \in \mathbb{Z}$ relatively prime to p with $r=p^{n} \frac{a}{b}$.

Definition

The p-adic numbers, denoted \mathbb{Q}_{p}, are the metric completion of \mathbb{Q} with respect to the metric induced by the p-adic abolute value. The p-adic integers, denoted \mathbb{Z}_{p}, are elements of the "dressed" unit ball in \mathbb{Q}_{p}, i.e.

$$
\mathbb{Z}_{p}:=B_{\leq}(0,1)=\left\{\left.x \in \mathbb{Q}_{p}| | x\right|_{p} \leq 1\right\}
$$

\mathbb{Q}_{p} is equipped with the Haar measure μ such that $\mu\left(\mathbb{Z}_{p}\right)=1$.

Definitions \& Notation: p-adic spaces

Definitions \& Notation: p-adic spaces

Let $Q \in \mathbb{N}$ and $\alpha \in[1, \infty)$.

Notation

On the product space \mathbb{Q}_{p}^{Q}, define the equivalent metrics

$$
d^{\alpha}(\boldsymbol{x}, \boldsymbol{y}):=\left(\sum_{i=1}^{Q}\left|x_{i}-y_{i}\right|_{p}^{\alpha}\right)^{1 / \alpha}
$$

and

$$
d^{\infty}(\boldsymbol{x}, \boldsymbol{y}):=\max \left\{\left|x_{i}-y_{i}\right|_{p} \mid 1 \leq i \leq Q\right\} .
$$

Definitions \& Notation: p-adic spaces

Let $Q \in \mathbb{N}$ and $\alpha \in[1, \infty)$.

Notation

On the product space \mathbb{Q}_{p}^{Q}, define the equivalent metrics

$$
d^{\alpha}(\boldsymbol{x}, \boldsymbol{y}):=\left(\sum_{i=1}^{Q}\left|x_{i}-y_{i}\right|_{p}^{\alpha}\right)^{1 / \alpha}
$$

and

$$
d^{\infty}(\boldsymbol{x}, \boldsymbol{y}):=\max \left\{\left|x_{i}-y_{i}\right|_{p} \mid 1 \leq i \leq Q\right\} .
$$

Lemma

For any $Q \in \mathbb{N}$ and any $\alpha \in[1, \infty]$, the product space $\left(\mathbb{Q}_{p}^{Q}, d^{\alpha}, \mu\right)$ satisfies

$$
\operatorname{dim}_{\mathrm{As}}\left(\mathbb{Q}_{p}^{Q}\right)=Q,
$$

where μ is the natural product measure.

Definitions \& Notation: Iterated function systems on \mathbb{Q}_{p}^{Q}

Definition

A self-similar iterated function system (SSIFS) on \mathbb{Q}_{p}^{Q} is a finite collection of maps $\left\{\varphi_{j}\right\}_{j \in \mathscr{L}}$, each of which is of the form

$$
\varphi_{j}(x)=p^{k_{j}} x+b_{j},
$$

where $k_{j} \in \mathbb{N}$ and $b_{j} \in \mathbb{Q}_{p}^{Q}$.

Definitions \& Notation: Iterated function systems on \mathbb{Q}_{p}^{Q}

Definition

A self-similar iterated function system (SSIFS) on \mathbb{Q}_{p}^{Q} is a finite collection of maps $\left\{\varphi_{j}\right\}_{j \in \mathscr{L}}$, each of which is of the form

$$
\varphi_{j}(x)=p^{k_{j}} x+b_{j},
$$

where $k_{j} \in \mathbb{N}$ and $b_{j} \in \mathbb{Q}_{p}^{Q}$. We call $p^{-k_{j}}$ the contraction ratio of φ_{j}.

Definitions \& Notation: Iterated function systems on \mathbb{Q}_{p}^{Q}

Definition

A self-similar iterated function system (SSIFS) on \mathbb{Q}_{p}^{Q} is a finite collection of maps $\left\{\varphi_{j}\right\}_{j \in \mathscr{L}}$, each of which is of the form

$$
\varphi_{j}(x)=p^{k_{j}} x+b_{j},
$$

where $k_{j} \in \mathbb{N}$ and $b_{j} \in \mathbb{Q}_{p}^{Q}$. We call $p^{-k_{j}}$ the contraction ratio of φ_{j}. We associate to an SSIFS the map of sets

$$
\Phi(E):=\bigcup_{j \in \mathscr{J}} \varphi_{j}(E)
$$

Definitions \& Notation: Iterated function systems on \mathbb{Q}_{p}^{Q}

Definition

A self-similar iterated function system (SSIFS) on \mathbb{Q}_{p}^{Q} is a finite collection of maps $\left\{\varphi_{j}\right\}_{j \in \mathscr{J}}$, each of which is of the form

$$
\varphi_{j}(x)=p^{k_{j}} x+b_{j}
$$

where $k_{j} \in \mathbb{N}$ and $b_{j} \in \mathbb{Q}_{p}^{Q}$. We call $p^{-k_{j}}$ the contraction ratio of φ_{j}. We associate to an SSIFS the map of sets

$$
\Phi(E):=\bigcup_{j \in \mathscr{J}} \varphi_{j}(E)
$$

Theorem

Let Φ be as above. Then there is a unique, nonempty, compact set $\mathscr{A} \subseteq \mathbb{Q}_{p}^{Q}$ such that

$$
\Phi(\mathscr{A})=\mathscr{A}
$$

We call \mathscr{A} the attractor of the SSIFS.

Definitions \& Notation: Iterated function systems on \mathbb{Q}_{p}^{Q}

Let $\left\{\varphi_{j}\right\}_{j \in \mathscr{L}}$ be an SSIFS.

Definitions \& Notation: Iterated function systems on \mathbb{Q}_{p}^{Q}

Let $\left\{\varphi_{j}\right\}_{j \in \mathscr{\mathscr { L }}}$ be an SSIFS.

Notation

Let \mathscr{J}^{*} denote the set of all finite sequences (or "words") with entries in \mathscr{J}. For each

$$
J=\left(j_{1}, j_{2}, \ldots, j_{n}\right) \in \mathscr{J},
$$

define

$$
\varphi_{J}=\varphi_{j_{n}} \circ \varphi_{j_{n-1}} \circ \cdots \circ \varphi_{1}
$$

Definitions \& Notation: Iterated function systems on \mathbb{Q}_{p}^{Q}

Let $\left\{\varphi_{j}\right\}_{j \in \mathscr{F}}$ be an SSIFS.

Notation

Let \mathscr{J}^{*} denote the set of all finite sequences (or "words") with entries in \mathscr{J}. For each

$$
J=\left(j_{1}, j_{2}, \ldots, j_{n}\right) \in \mathscr{J}
$$

define

$$
\varphi_{J}=\varphi_{j_{n}} \circ \varphi_{j_{n-1}} \circ \cdots \circ \varphi_{1} .
$$

Let $\omega=() \in \mathscr{J}^{*}$ denote the "empty word." We adopt the convention that φ_{ω} is the identity map, i.e.

$$
\varphi_{\omega}(x)=x
$$

Results \& Examples

Results \& Examples: Self-similar sets

Theorem

Fix $\alpha \in[1, \infty]$ and let \mathscr{A} be the attractor of the $\operatorname{SSIFS}\left\{\varphi_{j}\right\}_{j \in \mathscr{J}}$ on \mathbb{Q}_{p}^{Q}.

Results \& Examples: Self-similar sets

Theorem

Fix $\alpha \in[1, \infty]$ and let \mathscr{A} be the attractor of the $\operatorname{SSIFS}\left\{\varphi_{j}\right\}_{j \in \mathscr{J}}$ on \mathbb{Q}_{p}^{Q}. Further suppose that $b_{j} \in \mathbb{Z}_{p}$ for each j, and that $\varphi_{j}\left(\mathbb{Z}_{p}\right) \cap \varphi_{j^{\prime}}\left(\mathbb{Z}_{p}\right)=\emptyset$ for all $j \neq j^{\prime}$.

Results \& Examples: Self-similar sets

Theorem

Fix $\alpha \in[1, \infty]$ and let \mathscr{A} be the attractor of the $\operatorname{SSIFS}\left\{\varphi_{j}\right\}_{j \in \mathscr{J}}$ on \mathbb{Q}_{p}^{Q}. Further suppose that $b_{j} \in \mathbb{Z}_{p}$ for each j, and that $\varphi_{j}\left(\mathbb{Z}_{p}\right) \cap \varphi_{j^{\prime}}\left(\mathbb{Z}_{p}\right)=\emptyset$ for all $j \neq j^{\prime}$. Then

$$
\zeta_{\mathscr{A}}(s)=\zeta_{\mathscr{A}, \Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_{n} p^{-n s}
$$

Results \& Examples: Self-similar sets

Theorem

Fix $\alpha \in[1, \infty]$ and let \mathscr{A} be the attractor of the $\operatorname{SSIFS}\left\{\varphi_{j}\right\}_{j \in \mathscr{J}}$ on \mathbb{Q}_{p}^{Q}. Further suppose that $b_{j} \in \mathbb{Z}_{p}$ for each j, and that $\varphi_{j}\left(\mathbb{Z}_{p}\right) \cap \varphi_{j^{\prime}}\left(\mathbb{Z}_{p}\right)=\emptyset$ for all $j \neq j^{\prime}$. Then

$$
\zeta_{\mathscr{A}}(s)=\zeta_{\mathscr{A}, \Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_{n} p^{-n s},
$$

where

$$
\zeta_{\mathscr{A}, \Omega_{\iota}}(s)=\int_{\mathbb{Z}_{p}^{Q} \backslash \Phi\left(\mathbb{Z}_{p}^{Q}\right)} d^{\alpha}(x, \mathscr{A})^{s-Q} \mathrm{~d} \mu(x),
$$

Results \& Examples: Self-similar sets

Theorem

Fix $\alpha \in[1, \infty]$ and let \mathscr{A} be the attractor of the SSIFS $\left\{\varphi_{j}\right\}_{j \in \mathscr{J}}$ on \mathbb{Q}_{p}^{Q}. Further suppose that $b_{j} \in \mathbb{Z}_{p}$ for each j, and that $\varphi_{j}\left(\mathbb{Z}_{p}\right) \cap \varphi_{j^{\prime}}\left(\mathbb{Z}_{p}\right)=\emptyset$ for all $j \neq j^{\prime}$. Then

$$
\zeta_{\mathscr{A}}(s)=\zeta_{\mathscr{A}, \Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_{n} p^{-n s},
$$

where

$$
\zeta_{\mathscr{A}, \Omega_{\iota}}(s)=\int_{\mathbb{Z}_{p}^{Q} \backslash \Phi\left(\mathbb{Z}_{p}^{Q}\right)} d^{\alpha}(x, \mathscr{A})^{s-Q} \mathrm{~d} \mu(x),
$$

and C_{n} counts the number of maps of the form φ_{J} for some $J \in \mathscr{J}^{*}$ with contraction ratio p^{-n}.

Results \& Examples: 3-adic Cantor dust

Example

Let $\left\{\varphi_{j}\right\}_{j=1}^{4}$ be the SSIFS on \mathbb{Q}_{3}^{2} that maps \mathbb{Z}_{3}^{2} into the four rectangles shown to the left. Let \mathscr{C}^{2} denote the attractor of this SSIFS.

Results \& Examples: 3-adic Cantor dust

Example

Let $\left\{\varphi_{j}\right\}_{j=1}^{4}$ be the SSIFS on \mathbb{Q}_{3}^{2} that maps \mathbb{Z}_{3}^{2} into the four rectangles shown to the left. Let \mathscr{C}^{2} denote the attractor of this SSIFS.

We may also regard \mathscr{C}^{2} as the Cartesian product of two copies of a 3-adic Cantor set. In either case, \mathscr{C}^{2} is an analog of the ternary Cantor dust in \mathbb{R}^{2}.

Results \& Examples: 3-adic Cantor dust

Example (con't)

With respect to d^{∞},

$$
\zeta_{\mathscr{C}^{2}, \Omega_{\iota}}(s)=\int_{\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)} d^{\infty}\left(x, \mathscr{C}^{2}\right)^{s-2} \mathrm{~d} \mu(x)=\mu\left(\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)\right)=\frac{5}{9} .
$$

Results \& Examples: 3-adic Cantor dust

Example (con't)

With respect to d^{∞},

$$
\zeta_{\mathscr{C}^{2}, \Omega_{\iota}}(s)=\int_{\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)} d^{\infty}\left(x, \mathscr{C}^{2}\right)^{s-2} \mathrm{~d} \mu(x)=\mu\left(\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)\right)=\frac{5}{9}
$$

Next, observe that

$$
C_{n}:=\#\left\{J \in \mathscr{J}^{*} \mid \varphi_{J}(x)=3^{n} x+b_{J}\right\}=4^{n} .
$$

Results \& Examples: 3-adic Cantor dust

Example (con't)

With respect to d^{∞},

$$
\zeta_{\mathscr{C}^{2}, \Omega_{\iota}}(s)=\int_{\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)} d^{\infty}\left(x, \mathscr{C}^{2}\right)^{s-2} \mathrm{~d} \mu(x)=\mu\left(\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)\right)=\frac{5}{9}
$$

Next, observe that

$$
C_{n}:=\#\left\{J \in \mathscr{J}^{*} \mid \varphi_{J}(x)=3^{n} x+b_{J}\right\}=4^{n}
$$

Hence

$$
\zeta_{\mathscr{C}^{2}}(s)=\zeta_{\mathscr{C}^{2}, \Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_{n} 3^{-n s}
$$

Results \& Examples: 3-adic Cantor dust

Example (con't)

With respect to d^{∞},

$$
\zeta_{\mathscr{C}^{2}, \Omega_{\iota}}(s)=\int_{\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)} d^{\infty}\left(x, \mathscr{C}^{2}\right)^{s-2} \mathrm{~d} \mu(x)=\mu\left(\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)\right)=\frac{5}{9}
$$

Next, observe that

$$
C_{n}:=\#\left\{J \in \mathscr{J}^{*} \mid \varphi_{J}(x)=3^{n} x+b_{J}\right\}=4^{n} .
$$

Hence

$$
\zeta_{\mathscr{C}^{2}}(s)=\zeta_{\mathscr{C}^{2}, \Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_{n} 3^{-n s}=\frac{5}{9} \sum_{n=0}^{\infty}\left(\frac{4}{3^{s}}\right)^{n}
$$

Results \& Examples: 3-adic Cantor dust

Example (con't)

With respect to d^{∞},

$$
\zeta_{\mathscr{C}^{2}, \Omega_{\iota}}(s)=\int_{\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)} d^{\infty}\left(x, \mathscr{C}^{2}\right)^{s-2} \mathrm{~d} \mu(x)=\mu\left(\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)\right)=\frac{5}{9} .
$$

Next, observe that

$$
C_{n}:=\#\left\{J \in \mathscr{J}^{*} \mid \varphi_{J}(x)=3^{n} x+b_{J}\right\}=4^{n} .
$$

Hence

$$
\zeta_{\mathscr{C}^{2}}(s)=\zeta_{\mathscr{C}^{2}, \Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_{n} 3^{-n s}=\frac{5}{9} \sum_{n=0}^{\infty}\left(\frac{4}{3^{s}}\right)^{n}=\frac{5}{9} \frac{3^{s}}{3^{s}-4} .
$$

Results \& Examples: 3-adic Cantor dust

Example (con't)

With respect to d^{∞},

$$
\zeta_{\mathscr{C}^{2}, \Omega_{\iota}}(s)=\int_{\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)} d^{\infty}\left(x, \mathscr{C}^{2}\right)^{s-2} \mathrm{~d} \mu(x)=\mu\left(\mathbb{Z}_{3}^{2} \backslash \Phi\left(\mathbb{Z}_{3}^{2}\right)\right)=\frac{5}{9} .
$$

Next, observe that

$$
C_{n}:=\#\left\{J \in \mathscr{J}^{*} \mid \varphi_{J}(x)=3^{n} x+b_{J}\right\}=4^{n} .
$$

Hence

$$
\zeta_{\mathscr{C}^{2}}(s)=\zeta_{\mathscr{C}^{2}, \Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_{n} 3^{-n s}=\frac{5}{9} \sum_{n=0}^{\infty}\left(\frac{4}{3^{s}}\right)^{n}=\frac{5}{9} \frac{3^{s}}{3^{s}-4} .
$$

Therefore

$$
\mathscr{P}\left(\mathscr{C}^{2}\right)=\frac{\log (4)}{\log (3)}+\dot{\mathrm{i}} \frac{2 \pi \mathbb{Z}}{\log (3)} .
$$

Results \& Examples: Fibonacci attractors

Example

Fix a prime p and define maps on \mathbb{Q}_{p} by

$$
\varphi_{1}(x)=p x, \quad \text { and } \quad \varphi_{2}(x)=p^{2} x+1 .
$$

Let \mathscr{F} denote the attractor of the SSIFS $\left\{\varphi_{1}, \varphi_{2}\right\}$.

Results \& Examples: Fibonacci attractors

Example

Fix a prime p and define maps on \mathbb{Q}_{p} by

$$
\varphi_{1}(x)=p x, \quad \text { and } \quad \varphi_{2}(x)=p^{2} x+1 .
$$

Let \mathscr{F} denote the attractor of the SSIFS $\left\{\varphi_{1}, \varphi_{2}\right\}$. Then

$$
\zeta_{\mathscr{F}, \Omega_{\iota}}(s)=\frac{p-2}{p}+\frac{p-1}{p^{2}} p^{1-s} .
$$

Results \& Examples: Fibonacci attractors

Example

Fix a prime p and define maps on \mathbb{Q}_{p} by

$$
\varphi_{1}(x)=p x, \quad \text { and } \quad \varphi_{2}(x)=p^{2} x+1 .
$$

Let \mathscr{F} denote the attractor of the SSIFS $\left\{\varphi_{1}, \varphi_{2}\right\}$. Then

$$
\zeta_{\mathscr{F}, \Omega_{\iota}}(s)=\frac{p-2}{p}+\frac{p-1}{p^{2}} p^{1-s} .
$$

Next, note that $C_{0}=1$,

Results \& Examples: Fibonacci attractors

Example

Fix a prime p and define maps on \mathbb{Q}_{p} by

$$
\varphi_{1}(x)=p x, \quad \text { and } \quad \varphi_{2}(x)=p^{2} x+1 .
$$

Let \mathscr{F} denote the attractor of the SSIFS $\left\{\varphi_{1}, \varphi_{2}\right\}$. Then

$$
\zeta_{\mathscr{F}, \Omega_{\iota}}(s)=\frac{p-2}{p}+\frac{p-1}{p^{2}} p^{1-s} .
$$

Next, note that $C_{0}=1, C_{1}=1$,

Results \& Examples: Fibonacci attractors

Example

Fix a prime p and define maps on \mathbb{Q}_{p} by

$$
\varphi_{1}(x)=p x, \quad \text { and } \quad \varphi_{2}(x)=p^{2} x+1 .
$$

Let \mathscr{F} denote the attractor of the SSIFS $\left\{\varphi_{1}, \varphi_{2}\right\}$. Then

$$
\zeta_{\mathscr{F}, \Omega_{\iota}}(s)=\frac{p-2}{p}+\frac{p-1}{p^{2}} p^{1-s} .
$$

Next, note that $C_{0}=1, C_{1}=1$, and $C_{n}=C_{n-1}+C_{n-2}$.

Results \& Examples: Fibonacci attractors

Example

Fix a prime p and define maps on \mathbb{Q}_{p} by

$$
\varphi_{1}(x)=p x, \quad \text { and } \quad \varphi_{2}(x)=p^{2} x+1 .
$$

Let \mathscr{F} denote the attractor of the SSIFS $\left\{\varphi_{1}, \varphi_{2}\right\}$. Then

$$
\zeta_{\mathscr{F}, \Omega_{\iota}}(s)=\frac{p-2}{p}+\frac{p-1}{p^{2}} p^{1-s} .
$$

Next, note that $C_{0}=1, C_{1}=1$, and $C_{n}=C_{n-1}+C_{n-2}$. Thus

$$
C_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n+1}+\psi^{n+1}\right), \quad \text { where } \quad \phi, \psi=\frac{1 \pm \sqrt{5}}{2} .
$$

Results \& Examples: Fibonacci attractors

Example

Fix a prime p and define maps on \mathbb{Q}_{p} by

$$
\varphi_{1}(x)=p x, \quad \text { and } \quad \varphi_{2}(x)=p^{2} x+1
$$

Let \mathscr{F} denote the attractor of the $\operatorname{SSIFS}\left\{\varphi_{1}, \varphi_{2}\right\}$. Then

$$
\zeta_{\mathscr{F}, \Omega_{\iota}}(s)=\frac{p-2}{p}+\frac{p-1}{p^{2}} p^{1-s}
$$

Next, note that $C_{0}=1, C_{1}=1$, and $C_{n}=C_{n-1}+C_{n-2}$. Thus

$$
C_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n+1}+\psi^{n+1}\right), \quad \text { where } \quad \phi, \psi=\frac{1 \pm \sqrt{5}}{2}
$$

Hence

$$
\sum_{n=0}^{\infty} C_{n} p^{-n s}=\frac{\sqrt{5} p^{2 s}}{\left(p^{s}-\phi\right)\left(p^{s}-\psi\right)}
$$

Results \& Examples: Fibonacci attractors

Example (con't)
And so

$$
\zeta_{\mathscr{F}}(s)=\left(\frac{p-2}{p}+\frac{p-1}{p^{2}} p^{1-s}\right) \frac{\sqrt{5} p^{2 s}}{\left(p^{s}-\phi\right)\left(p^{2}-\psi\right)} .
$$

Results \& Examples: Fibonacci attractors

Example (con't)

And so

$$
\zeta_{\mathscr{F}}(s)=\left(\frac{p-2}{p}+\frac{p-1}{p^{2}} p^{1-s}\right) \frac{\sqrt{5} p^{2 s}}{\left(p^{s}-\phi\right)\left(p^{2}-\psi\right)} .
$$

Therefore

$$
\mathscr{P}(\mathscr{F})=\left(\frac{\log (\phi)}{\log (p)}+\mathrm{i} \frac{2 \pi \mathbb{Z}}{\log (p)}\right) \cup\left(-\frac{\log (\phi)}{\log (p)}+\mathrm{i} \frac{(2 \pi+1) \mathbb{Z}}{\log (p)}\right) .
$$

Results \& Examples: Fibonacci attractors

Example (con't)

And so

$$
\zeta_{\mathscr{F}}(s)=\left(\frac{p-2}{p}+\frac{p-1}{p^{2}} p^{1-s}\right) \frac{\sqrt{5} p^{2 s}}{\left(p^{s}-\phi\right)\left(p^{2}-\psi\right)} .
$$

Therefore

$$
\mathscr{P}(\mathscr{F})=\left(\frac{\log (\phi)}{\log (p)}+\mathrm{i} \frac{2 \pi \mathbb{Z}}{\log (p)}\right) \cup\left(-\frac{\log (\phi)}{\log (p)}+\mathrm{i} \frac{(2 \pi+1) \mathbb{Z}}{\log (p)}\right) .
$$

Results \& Examples: A McMullen carpet analog

Example

Let \mathscr{A} denote the attractor of the IFS shown to the left.

Results \& Examples: A McMullen carpet analog

Example

Let \mathscr{A} denote the attractor of the IFS shown to the left. With respect to d^{∞},

$$
\begin{aligned}
\mathscr{P}(\mathscr{A})= & \left(\frac{3 \log (2)}{2 \log (3)}+\mathrm{i} \frac{\pi \mathbb{Z}}{\log (3)}\right) \\
& \cup\left(\frac{\log (4)}{\log (3)}-1+\dot{\mathrm{i}} \frac{2 \pi \mathbb{Z}}{\log (3)}\right)
\end{aligned}
$$

Selected Bibliography

[1] Michel L. Lapidus and Hùng Lũ', Nonarchimedean cantor set and string, J. Fixed Point Theory and Appl. 3 (2008), no. 1, 181-190.
[2] Michel L. Lapidus, Goran Radunović, and Darko Z̆ubrinić, Fractal zeta functions and fractal drums, Springer, 2017.
[3] Curt McMullen, The Hausdorff dimension of general Sierpński carpets, Nagoya Mathematical J. 96 (1984), 1-9.

