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Definitions & Notation: Homogeneous measures

Let (X, d, µ) be a complete, separable metric measure space such that

0 < µ(B(x, r)) <∞

for all x ∈ X and r > 0. Let A ⊆ X.

Definition

We say that µ is q-homogeneous on A if there is some constant M > 0 such that

µ(B(x, r))

µ(B(ξ, ρ))
≤M

(
r

ρ

)q
for all 0 < ρ < r ≤ diam(A), all x ∈ A, and all ξ ∈ B(x, r). The measure theoretic

Assouad dimension of A is

dimAs(A) := inf {q ≥ 0 |µ is q-homogeneous on A} .
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Definitions & Notation: The distance zeta function

Definition

Suppose that dimAs(X) = Q and that A is a bounded subset of X. For δ > 0, define

Aδ := {x ∈ X | d(x,A) ≤ δ} .

The distance zeta function associated to A is given by

ζA(s) = ζA,Aδ(s) :=

∫
Aδ

d(x,A)s−Q dµ(x)

Under relatively mild hypotheses on A, the integral above will diverge at—but be absolutely

convergent to the right of—the upper Minkowski dimension of A.

Definition

Suppose that ζA(s) can be meromorphically extended to a (strictly) larger domain. Then

the complex dimensions of A, denoted P(A), are the poles of this extension. That is

P(A) := {ω ∈ C |ω is a pole of ζA(s)} .
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Definitions & Notation: p-adic spaces

Let p be a fixed prime number.

Definition

Let r ∈ Q. The p-adic absolute value of r is given by

|r|p := p−n,

where n is the unique integer such that there are a, b ∈ Z relatively prime to p with r = pn ab .

Definition

The p-adic numbers, denoted Qp, are the metric completion of Q with respect to the metric

induced by the p-adic abolute value. The p-adic integers, denoted Zp, are elements of the

“dressed” unit ball in Qp, i.e.

Zp := B≤(0, 1) = {x ∈ Qp | |x|p ≤ 1} .

Qp is equipped with the Haar measure µ such that µ(Zp) = 1.
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Definitions & Notation: p-adic spaces

7Z7 7Z7 + 1

7Z7 + 3

7Z7 + 4

7Z7 + 5 7Z7 + 6
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Definitions & Notation: p-adic spaces

Let Q ∈ N and α ∈ [1,∞).

Notation

On the product space QQp , define the equivalent metrics

dα(x,y) :=

(
Q∑
i=1

|xi − yi|αp

)1/α

,

and

d∞(x,y) := max
{
|xi − yi|p

∣∣∣ 1 ≤ i ≤ Q} .

Lemma

For any Q ∈ N and any α ∈ [1,∞], the product space (QQp , dα, µ) satisfies

dimAs(QQp ) = Q,

where µ is the natural product measure.
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Definitions & Notation: Iterated function systems on QQ
p

Definition

A self-similar iterated function system (SSIFS) on QQp is a finite collection of maps

{ϕj}j∈J , each of which is of the form

ϕj(x) = pkjx+ bj ,

where kj ∈ N and bj ∈ QQp .

We call p−kj the contraction ratio of ϕj . We associate to an

SSIFS the map of sets

Φ(E) :=
⋃
j∈J

ϕj(E).

Theorem

Let Φ be as above. Then there is a unique, nonempty, compact set A ⊆ QQp such that

Φ(A ) = A .

We call A the attractor of the SSIFS.
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Definitions & Notation: Iterated function systems on QQ
p

Let {ϕj}j∈J be an SSIFS.

Notation

Let J ∗ denote the set of all finite sequences (or “words”) with entries in J . For each

J = (j1, j2, . . . , jn) ∈J ,

define

ϕJ = ϕjn ◦ ϕjn−1
◦ · · · ◦ ϕ1.

Let ω = ( ) ∈J ∗ denote the “empty word.” We adopt the convention that ϕω is the identity

map, i.e.

ϕω(x) = x.
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Results & Examples
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Results & Examples: Self-similar sets

Theorem

Fix α ∈ [1,∞] and let A be the attractor of the SSIFS {ϕj}j∈J on QQp .

Further suppose

that bj ∈ Zp for each j, and that ϕj(Zp) ∩ ϕj′(Zp) = ∅ for all j 6= j′. Then

ζA (s) = ζA ,Ωι(s)

∞∑
n=0

Cnp
−ns,

where

ζA ,Ωι(s) =

∫
ZQp \Φ(ZQp )

dα(x,A )s−Q dµ(x),

and Cn counts the number of maps of the form ϕJ for some J ∈ J ∗ with contraction

ratio p−n.
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Results & Examples: 3-adic Cantor dust

ϕ1 ϕ2

ϕ3 ϕ4

3Z3

3Z3 + 1

3Z3 + 2

3Z3 3Z3 + 1 3Z3 + 2

Example

Let {ϕj}4j=1 be the SSIFS on Q2
3 that maps

Z2
3 into the four rectangles shown to the left.

Let C 2 denote the attractor of this SSIFS.

We may also regard C 2 as the Cartesian prod-

uct of two copies of a 3-adic Cantor set. In

either case, C 2 is an analog of the ternary

Cantor dust in R2.
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Results & Examples: 3-adic Cantor dust

Example (con’t)

With respect to d∞,

ζC 2,Ωι(s) =

∫
Z2
3\Φ(Z2

3)

d∞(x,C 2)s−2 dµ(x) = µ
(
Z2

3 \ Φ(Z2
3)
)

=
5

9
.

Next, observe that

Cn := # {J ∈J ∗ |ϕJ(x) = 3nx+ bJ} = 4n.

Hence

ζC 2(s) = ζC 2,Ωι(s)
∞∑
n=0

Cn3−ns

=
5

9

∞∑
n=0

(
4

3s

)n
=

5

9

3s

3s − 4
.

Therefore

P(C 2) =
log(4)

log(3)
+ i

2πZ
log(3)

.
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Results & Examples: Fibonacci attractors

Example

Fix a prime p and define maps on Qp by

ϕ1(x) = px, and ϕ2(x) = p2x+ 1.

Let F denote the attractor of the SSIFS {ϕ1, ϕ2}.

Then

ζF ,Ωι(s) =
p− 2

p
+
p− 1

p2
p1−s.

Next, note that C0 = 1, C1 = 1, and Cn = Cn−1 + Cn−2. Thus

Cn =
1√
5

(
φn+1 + ψn+1

)
, where φ, ψ =

1±
√

5

2
.

Hence
∞∑
n=0

Cnp
−ns =

√
5p2s

(ps − φ)(ps − ψ)
.
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Results & Examples: Fibonacci attractors

Example (con’t)

And so

ζF (s) =

(
p− 2

p
+
p− 1

p2
p1−s

) √
5p2s

(ps − φ)(p2 − ψ)
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(
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(
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log(p)

)
.

2π

4π
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−2π
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Results & Examples: A McMullen carpet analog

3Z3

3Z3 + 1
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9Z3 + 1

9Z3 + 4

9Z3 + 7

9Z3 + 2

9Z3 + 5

9Z3 + 8

Example

Let A denote the attractor of the IFS shown

to the left.

With respect to d∞,

P(A ) =

(
3 log(2)

2 log(3)
+ i

πZ
log(3)

)
∪
(

log(4)

log(3)
− 1 + i

2πZ
log(3)

)
.
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