The Complex Dimensions of Self-Similar Subsets of *p*-adic Product Spaces

Alexander M. Henderson

University of California Riverside Graduate Student Seminar

2 June 2017

Outline

Definitions & Notation

Homogeneous measures The distance zeta function p-adic spaces Iterated function systems on \mathbb{Q}_p^Q

Results & Examples

Self-similar sets 3-adic Cantor dust Fibonacci attractors A McMullen carpet analog

Selected Bibliography

Definitions & Notation

Definitions & Notation: Homogeneous measures

Let (X, d, μ) be a complete, separable metric measure space such that

 $0 < \mu(B(x,r)) < \infty$

for all $x \in X$ and r > 0. Let $A \subseteq X$.

Definitions & Notation: Homogeneous measures

Let (X, d, μ) be a complete, separable metric measure space such that

 $0 < \mu(B(x,r)) < \infty$

for all $x \in X$ and r > 0. Let $A \subseteq X$.

Definition

We say that μ is *q*-homogeneous on A if there is some constant M > 0 such that

$$\frac{\mu(B(x,r))}{\mu(B(\xi,\rho))} \le M\left(\frac{r}{\rho}\right)^q$$

for all $0 < \rho < r \leq \text{diam}(A)$, all $x \in A$, and all $\xi \in B(x,r)$.

Definitions & Notation: Homogeneous measures

Let (X, d, μ) be a complete, separable metric measure space such that

 $0 < \mu(B(x,r)) < \infty$

for all $x \in X$ and r > 0. Let $A \subseteq X$.

Definition

We say that μ is *q*-homogeneous on A if there is some constant M > 0 such that

$$\frac{\mu(B(x,r))}{\mu(B(\xi,\rho))} \le M\left(\frac{r}{\rho}\right)^q$$

for all $0 < \rho < r \le \text{diam}(A)$, all $x \in A$, and all $\xi \in B(x,r)$. The *measure theoretic* Assound dimension of A is

 $\dim_{As}(A) := \inf \{ q \ge 0 \mid \mu \text{ is } q \text{-homogeneous on } A \}.$

Definition

Suppose that $\dim_{As}(X) = Q$ and that A is a bounded subset of X. For $\delta > 0$, define

$$A_{\delta} := \{ x \in X \mid d(x, A) \le \delta \}.$$

Definition

Suppose that $\dim_{As}(X) = Q$ and that A is a bounded subset of X. For $\delta > 0$, define

$$A_{\delta} := \{ x \in X \mid d(x, A) \le \delta \}.$$

The *distance zeta function* associated to A is given by

$$\zeta_A(s) = \zeta_{A,A_\delta}(s) := \int_{A_\delta} d(x,A)^{s-Q} \,\mathrm{d}\mu(x)$$

Definition

Suppose that $\dim_{As}(X) = Q$ and that A is a bounded subset of X. For $\delta > 0$, define

$$A_{\delta} := \{ x \in X \mid d(x, A) \le \delta \}.$$

The *distance zeta function* associated to A is given by

$$\zeta_A(s) = \zeta_{A,A_\delta}(s) := \int_{A_\delta} d(x,A)^{s-Q} \,\mathrm{d}\mu(x)$$

Under relatively mild hypotheses on A, the integral above will diverge at—but be absolutely convergent to the right of—the upper Minkowski dimension of A.

Definition

Suppose that $\dim_{As}(X) = Q$ and that A is a bounded subset of X. For $\delta > 0$, define

$$A_{\delta} := \{ x \in X \mid d(x, A) \le \delta \}.$$

The *distance zeta function* associated to A is given by

$$\zeta_A(s) = \zeta_{A,A_\delta}(s) := \int_{A_\delta} d(x,A)^{s-Q} \,\mathrm{d}\mu(x)$$

Under relatively mild hypotheses on A, the integral above will diverge at—but be absolutely convergent to the right of—the upper Minkowski dimension of A.

Definition

Suppose that $\zeta_A(s)$ can be meromorphically extended to a (strictly) larger domain. Then the *complex dimensions* of A, denoted $\mathscr{P}(A)$, are the poles of this extension. That is

 $\mathscr{P}(A) := \{ \omega \in \mathbb{C} \, | \, \omega \text{ is a pole of } \zeta_A(s) \}.$

Let p be a fixed prime number.

Let p be a fixed prime number.

Definition

Let $r \in \mathbb{Q}$. The *p*-adic absolute value of r is given by

$$|r|_p := p^{-n},$$

where n is the unique integer such that there are $a, b \in \mathbb{Z}$ relatively prime to p with $r = p^n \frac{a}{b}$.

Let p be a fixed prime number.

Definition

Let $r \in \mathbb{Q}$. The *p*-adic absolute value of *r* is given by

$$|r|_p := p^{-n},$$

where n is the unique integer such that there are $a, b \in \mathbb{Z}$ relatively prime to p with $r = p^n \frac{a}{b}$.

Definition

The *p*-adic numbers, denoted \mathbb{Q}_p , are the metric completion of \mathbb{Q} with respect to the metric induced by the *p*-adic abolute value.

Let p be a fixed prime number.

Definition

Let $r \in \mathbb{Q}$. The *p*-adic absolute value of r is given by

$$|r|_p := p^{-n},$$

where n is the unique integer such that there are $a, b \in \mathbb{Z}$ relatively prime to p with $r = p^n \frac{a}{b}$.

Definition

The *p*-adic numbers, denoted \mathbb{Q}_p , are the metric completion of \mathbb{Q} with respect to the metric induced by the *p*-adic abolute value. The *p*-adic integers, denoted \mathbb{Z}_p , are elements of the "dressed" unit ball in \mathbb{Q}_p , i.e.

$$\mathbb{Z}_p := B_{\leq}(0,1) = \{ x \in \mathbb{Q}_p \, | \, |x|_p \le 1 \} \,.$$

Let p be a fixed prime number.

Definition

Let $r \in \mathbb{Q}$. The *p*-adic absolute value of r is given by

$$|r|_p := p^{-n},$$

where n is the unique integer such that there are $a, b \in \mathbb{Z}$ relatively prime to p with $r = p^n \frac{a}{b}$.

Definition

The *p*-adic numbers, denoted \mathbb{Q}_p , are the metric completion of \mathbb{Q} with respect to the metric induced by the *p*-adic abolute value. The *p*-adic integers, denoted \mathbb{Z}_p , are elements of the "dressed" unit ball in \mathbb{Q}_p , i.e.

$$\mathbb{Z}_p := B_{\leq}(0,1) = \{ x \in \mathbb{Q}_p \, | \, |x|_p \le 1 \} \,.$$

 \mathbb{Q}_p is equipped with the Haar measure μ such that $\mu(\mathbb{Z}_p) = 1$.

Let $Q \in \mathbb{N}$ and $\alpha \in [1, \infty)$.

Notation

On the product space \mathbb{Q}_p^Q , define the equivalent metrics

$$d^{\alpha}(\boldsymbol{x}, \boldsymbol{y}) := \left(\sum_{i=1}^{Q} |x_i - y_i|_p^{\alpha}\right)^{1/\alpha},$$

and

$$d^{\infty}(\boldsymbol{x}, \boldsymbol{y}) := \max\left\{ |x_i - y_i|_p \, \middle| \, 1 \le i \le Q \right\}.$$

Let $Q \in \mathbb{N}$ and $\alpha \in [1, \infty)$.

Notation

On the product space \mathbb{Q}_p^Q , define the equivalent metrics

$$d^{\alpha}(\boldsymbol{x}, \boldsymbol{y}) := \left(\sum_{i=1}^{Q} |x_i - y_i|_p^{\alpha}\right)^{1/\alpha},$$

and

$$d^{\infty}(\boldsymbol{x}, \boldsymbol{y}) := \max\left\{ \left| x_i - y_i \right|_p \, \middle| \, 1 \le i \le Q \right\}.$$

Lemma

For any $Q \in \mathbb{N}$ and any $\alpha \in [1, \infty]$, the product space $(\mathbb{Q}_p^Q, d^{\alpha}, \mu)$ satisfies

 $\dim_{\mathrm{As}}(\mathbb{Q}_p^Q) = Q,$

where μ is the natural product measure.

A self-similar iterated function system (SSIFS) on \mathbb{Q}_p^Q is a finite collection of maps $\{\varphi_j\}_{j \in \mathscr{J}}$, each of which is of the form

$$\varphi_j(x) = p^{k_j} x + b_j,$$

where $k_j \in \mathbb{N}$ and $b_j \in \mathbb{Q}_p^Q$.

A self-similar iterated function system (SSIFS) on \mathbb{Q}_p^Q is a finite collection of maps $\{\varphi_j\}_{j \in \mathscr{J}}$, each of which is of the form

$$\varphi_j(x) = p^{k_j} x + b_j,$$

where $k_j \in \mathbb{N}$ and $b_j \in \mathbb{Q}_p^Q$. We call p^{-k_j} the *contraction ratio* of φ_j .

A self-similar iterated function system (SSIFS) on \mathbb{Q}_p^Q is a finite collection of maps $\{\varphi_j\}_{j \in \mathscr{J}}$, each of which is of the form

$$\varphi_j(x) = p^{k_j} x + b_j,$$

where $k_j \in \mathbb{N}$ and $b_j \in \mathbb{Q}_p^Q$. We call p^{-k_j} the *contraction ratio* of φ_j . We associate to an SSIFS the map of sets

 $\Phi(E) := \bigcup_{j \in \mathscr{J}} \varphi_j(E).$

A self-similar iterated function system (SSIFS) on \mathbb{Q}_p^Q is a finite collection of maps $\{\varphi_j\}_{j \in \mathscr{J}}$, each of which is of the form

$$\varphi_j(x) = p^{k_j} x + b_j,$$

where $k_j \in \mathbb{N}$ and $b_j \in \mathbb{Q}_p^Q$. We call p^{-k_j} the *contraction ratio* of φ_j . We associate to an SSIFS the map of sets

$$\Phi(E) := \bigcup_{j \in \mathscr{J}} \varphi_j(E).$$

Theorem

Let Φ be as above. Then there is a unique, nonempty, compact set $\mathscr{A} \subseteq \mathbb{Q}_p^Q$ such that

$$\Phi(\mathscr{A}) = \mathscr{A}.$$

We call \mathscr{A} the **attractor** of the SSIFS.

Let $\{\varphi_j\}_{j\in \mathscr{J}}$ be an SSIFS.

Let $\{\varphi_j\}_{j\in \mathscr{J}}$ be an SSIFS.

Notation

Let \mathscr{J}^* denote the set of all finite sequences (or "words") with entries in \mathscr{J} . For each

$$J=(j_1,j_2,\ldots,j_n)\in\mathscr{J},$$

define

$$\varphi_J = \varphi_{j_n} \circ \varphi_{j_{n-1}} \circ \cdots \circ \varphi_1.$$

Let $\{\varphi_j\}_{j\in \mathscr{J}}$ be an SSIFS.

Notation

Let \mathscr{J}^* denote the set of all finite sequences (or "words") with entries in \mathscr{J} . For each

$$J = (j_1, j_2, \ldots, j_n) \in \mathscr{J},$$

define

$$\varphi_J = \varphi_{j_n} \circ \varphi_{j_{n-1}} \circ \cdots \circ \varphi_1.$$

Let $\omega = (\) \in \mathscr{J}^*$ denote the "empty word." We adopt the convention that φ_{ω} is the identity map, i.e.

$$\varphi_{\omega}(x) = x$$

Results & Examples

Fix $\alpha \in [1,\infty]$ and let \mathscr{A} be the attractor of the SSIFS $\{\varphi_j\}_{j \in \mathscr{J}}$ on \mathbb{Q}_p^Q .

Fix $\alpha \in [1, \infty]$ and let \mathscr{A} be the attractor of the SSIFS $\{\varphi_j\}_{j \in \mathscr{J}}$ on \mathbb{Q}_p^Q . Further suppose that $b_j \in \mathbb{Z}_p$ for each j, and that $\varphi_j(\mathbb{Z}_p) \cap \varphi_{j'}(\mathbb{Z}_p) = \emptyset$ for all $j \neq j'$.

Fix $\alpha \in [1, \infty]$ and let \mathscr{A} be the attractor of the SSIFS $\{\varphi_j\}_{j \in \mathscr{J}}$ on \mathbb{Q}_p^Q . Further suppose that $b_j \in \mathbb{Z}_p$ for each j, and that $\varphi_j(\mathbb{Z}_p) \cap \varphi_{j'}(\mathbb{Z}_p) = \emptyset$ for all $j \neq j'$. Then

$$\zeta_{\mathscr{A}}(s) = \zeta_{\mathscr{A},\Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_n p^{-ns},$$

Fix $\alpha \in [1, \infty]$ and let \mathscr{A} be the attractor of the SSIFS $\{\varphi_j\}_{j \in \mathscr{J}}$ on \mathbb{Q}_p^Q . Further suppose that $b_j \in \mathbb{Z}_p$ for each j, and that $\varphi_j(\mathbb{Z}_p) \cap \varphi_{j'}(\mathbb{Z}_p) = \emptyset$ for all $j \neq j'$. Then

$$\zeta_{\mathscr{A}}(s) = \zeta_{\mathscr{A},\Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_n p^{-ns},$$

where

$$\zeta_{\mathscr{A},\Omega_{\iota}}(s) = \int_{\mathbb{Z}_{p}^{Q} \setminus \Phi(\mathbb{Z}_{p}^{Q})} d^{\alpha}(x,\mathscr{A})^{s-Q} \,\mathrm{d}\mu(x),$$

Fix $\alpha \in [1,\infty]$ and let \mathscr{A} be the attractor of the SSIFS $\{\varphi_j\}_{j\in\mathscr{J}}$ on \mathbb{Q}_p^Q . Further suppose that $b_j \in \mathbb{Z}_p$ for each j, and that $\varphi_j(\mathbb{Z}_p) \cap \varphi_{j'}(\mathbb{Z}_p) = \emptyset$ for all $j \neq j'$. Then

$$\zeta_{\mathscr{A}}(s) = \zeta_{\mathscr{A},\Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_n p^{-ns},$$

where

$$\zeta_{\mathscr{A},\Omega_{\iota}}(s) = \int_{\mathbb{Z}_{p}^{Q} \setminus \Phi(\mathbb{Z}_{p}^{Q})} d^{\alpha}(x,\mathscr{A})^{s-Q} \,\mathrm{d}\mu(x),$$

and C_n counts the number of maps of the form φ_J for some $J \in \mathscr{J}^*$ with contraction ratio p^{-n} .

Example

Let $\{\varphi_j\}_{j=1}^4$ be the SSIFS on \mathbb{Q}_3^2 that maps \mathbb{Z}_3^2 into the four rectangles shown to the left. Let \mathscr{C}^2 denote the attractor of this SSIFS.

Example

Let $\{\varphi_j\}_{j=1}^4$ be the SSIFS on \mathbb{Q}_3^2 that maps \mathbb{Z}_3^2 into the four rectangles shown to the left. Let \mathscr{C}^2 denote the attractor of this SSIFS.

We may also regard \mathscr{C}^2 as the Cartesian product of two copies of a 3-adic Cantor set. In either case, \mathscr{C}^2 is an analog of the ternary Cantor dust in \mathbb{R}^2 .

Example (con't)

With respect to d^{∞} ,

$$\zeta_{\mathscr{C}^2,\Omega_\iota}(s) = \int_{\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)} d^\infty(x, \mathscr{C}^2)^{s-2} \,\mathrm{d}\mu(x) = \mu\left(\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)\right) = \frac{5}{9}$$

Example (con't)

With respect to d^{∞} ,

$$\zeta_{\mathscr{C}^2,\Omega_\iota}(s) = \int_{\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)} d^\infty(x, \mathscr{C}^2)^{s-2} \,\mathrm{d}\mu(x) = \mu\left(\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)\right) = \frac{5}{9}$$

Next, observe that

$$C_n := \# \{ J \in \mathscr{J}^* \, | \, \varphi_J(x) = 3^n x + b_J \} = 4^n.$$

Example (con't)

With respect to d^{∞} ,

$$\zeta_{\mathscr{C}^2,\Omega_\iota}(s) = \int_{\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)} d^\infty(x, \mathscr{C}^2)^{s-2} \,\mathrm{d}\mu(x) = \mu\left(\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)\right) = \frac{5}{9}$$

Next, observe that

$$C_n := \# \{ J \in \mathscr{J}^* \, | \, \varphi_J(x) = 3^n x + b_J \} = 4^n.$$

Hence

$$\zeta_{\mathscr{C}^2}(s) = \zeta_{\mathscr{C}^2,\Omega_\iota}(s) \sum_{n=0}^{\infty} C_n 3^{-ns}$$

Example (con't)

With respect to d^{∞} ,

$$\zeta_{\mathscr{C}^2,\Omega_\iota}(s) = \int_{\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)} d^\infty(x, \mathscr{C}^2)^{s-2} \,\mathrm{d}\mu(x) = \mu\left(\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)\right) = \frac{5}{9}$$

Next, observe that

$$C_n := \# \{ J \in \mathscr{J}^* \, | \, \varphi_J(x) = 3^n x + b_J \} = 4^n.$$

Hence

$$\zeta_{\mathscr{C}^{2}}(s) = \zeta_{\mathscr{C}^{2},\Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_{n} 3^{-ns} = \frac{5}{9} \sum_{n=0}^{\infty} \left(\frac{4}{3^{s}}\right)^{n}$$

14/18

Example (con't)

With respect to d^{∞} ,

$$\zeta_{\mathscr{C}^2,\Omega_\iota}(s) = \int_{\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)} d^\infty(x,\mathscr{C}^2)^{s-2} \,\mathrm{d}\mu(x) = \mu\left(\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)\right) = \frac{5}{9}$$

Next, observe that

$$C_n := \# \{ J \in \mathscr{J}^* \, | \, \varphi_J(x) = 3^n x + b_J \} = 4^n.$$

Hence

$$\zeta_{\mathscr{C}^2}(s) = \zeta_{\mathscr{C}^2,\Omega_\iota}(s) \sum_{n=0}^{\infty} C_n 3^{-ns} = \frac{5}{9} \sum_{n=0}^{\infty} \left(\frac{4}{3^s}\right)^n = \frac{5}{9} \frac{3^s}{3^s - 4}.$$

Example (con't)

With respect to d^{∞} ,

$$\zeta_{\mathscr{C}^2,\Omega_\iota}(s) = \int_{\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)} d^\infty(x,\mathscr{C}^2)^{s-2} \,\mathrm{d}\mu(x) = \mu\left(\mathbb{Z}_3^2 \setminus \Phi(\mathbb{Z}_3^2)\right) = \frac{5}{9}$$

Next, observe that

$$C_n := \# \{ J \in \mathscr{J}^* \, | \, \varphi_J(x) = 3^n x + b_J \} = 4^n.$$

Hence

$$\zeta_{\mathscr{C}^2}(s) = \zeta_{\mathscr{C}^2,\Omega_{\iota}}(s) \sum_{n=0}^{\infty} C_n 3^{-ns} = \frac{5}{9} \sum_{n=0}^{\infty} \left(\frac{4}{3^s}\right)^n = \frac{5}{9} \frac{3^s}{3^s - 4}.$$

Therefore

$$\mathscr{P}(\mathscr{C}^2) = \frac{\log(4)}{\log(3)} + i \frac{2\pi\mathbb{Z}}{\log(3)}.$$

Example

Fix a prime p and define maps on \mathbb{Q}_p by

$$\varphi_1(x) = px, \quad and \quad \varphi_2(x) = p^2 x + 1.$$

Let \mathscr{F} denote the attractor of the SSIFS $\{\varphi_1, \varphi_2\}$.

Example

Fix a prime p and define maps on \mathbb{Q}_p by

$$\varphi_1(x) = px, \quad and \quad \varphi_2(x) = p^2 x + 1.$$

Let \mathscr{F} denote the attractor of the SSIFS $\{\varphi_1, \varphi_2\}$. Then

$$\zeta_{\mathscr{F},\Omega_{\iota}}(s) = \frac{p-2}{p} + \frac{p-1}{p^2}p^{1-s}.$$

Example

Fix a prime p and define maps on \mathbb{Q}_p by

$$\varphi_1(x) = px, \quad and \quad \varphi_2(x) = p^2 x + 1.$$

Let \mathscr{F} denote the attractor of the SSIFS $\{\varphi_1, \varphi_2\}$. Then

$$\zeta_{\mathscr{F},\Omega_{\iota}}(s) = \frac{p-2}{p} + \frac{p-1}{p^2}p^{1-s}.$$

Next, note that $C_0 = 1$,

Example

Fix a prime p and define maps on \mathbb{Q}_p by

$$\varphi_1(x) = px, \quad and \quad \varphi_2(x) = p^2 x + 1.$$

Let \mathscr{F} denote the attractor of the SSIFS $\{\varphi_1, \varphi_2\}$. Then

$$\zeta_{\mathscr{F},\Omega_{\iota}}(s) = \frac{p-2}{p} + \frac{p-1}{p^2}p^{1-s}.$$

Next, note that $C_0 = 1$ *,* $C_1 = 1$ *,*

$\mathbf{Example}$

Fix a prime p and define maps on \mathbb{Q}_p by

$$\varphi_1(x) = px, \quad and \quad \varphi_2(x) = p^2 x + 1.$$

Let \mathscr{F} denote the attractor of the SSIFS $\{\varphi_1, \varphi_2\}$. Then

$$\zeta_{\mathscr{F},\Omega_{\iota}}(s) = \frac{p-2}{p} + \frac{p-1}{p^2}p^{1-s}.$$

Next, note that $C_0 = 1$, $C_1 = 1$, and $C_n = C_{n-1} + C_{n-2}$.

$\mathbf{Example}$

Fix a prime p and define maps on \mathbb{Q}_p by

$$\varphi_1(x) = px, \quad and \quad \varphi_2(x) = p^2 x + 1.$$

Let \mathscr{F} denote the attractor of the SSIFS $\{\varphi_1, \varphi_2\}$. Then

$$\zeta_{\mathscr{F},\Omega_{\iota}}(s) = \frac{p-2}{p} + \frac{p-1}{p^2}p^{1-s}$$

Next, note that $C_0 = 1$, $C_1 = 1$, and $C_n = C_{n-1} + C_{n-2}$. Thus

$$C_n = \frac{1}{\sqrt{5}} \left(\phi^{n+1} + \psi^{n+1} \right), \quad where \quad \phi, \psi = \frac{1 \pm \sqrt{5}}{2}.$$

$\mathbf{Example}$

Fix a prime p and define maps on \mathbb{Q}_p by

$$\varphi_1(x) = px, \quad and \quad \varphi_2(x) = p^2 x + 1.$$

Let \mathscr{F} denote the attractor of the SSIFS $\{\varphi_1, \varphi_2\}$. Then

$$\zeta_{\mathscr{F},\Omega_{\iota}}(s) = \frac{p-2}{p} + \frac{p-1}{p^2}p^{1-s}$$

Next, note that $C_0 = 1$, $C_1 = 1$, and $C_n = C_{n-1} + C_{n-2}$. Thus

$$C_n = \frac{1}{\sqrt{5}} \left(\phi^{n+1} + \psi^{n+1} \right), \quad where \quad \phi, \psi = \frac{1 \pm \sqrt{5}}{2}.$$

Hence

$$\sum_{n=0}^{\infty} C_n p^{-ns} = \frac{\sqrt{5}p^{2s}}{(p^s - \phi)(p^s - \psi)}$$

Example (con't)

And so

$$\zeta_{\mathscr{F}}(s) = \left(\frac{p-2}{p} + \frac{p-1}{p^2}p^{1-s}\right) \frac{\sqrt{5}p^{2s}}{(p^s - \phi)(p^2 - \psi)}.$$

Example (con't)

 $And \ so$

$$\zeta_{\mathscr{F}}(s) = \left(\frac{p-2}{p} + \frac{p-1}{p^2}p^{1-s}\right) \frac{\sqrt{5}p^{2s}}{(p^s - \phi)(p^2 - \psi)}.$$

Therefore

$$\mathscr{P}(\mathscr{F}) = \left(\frac{\log(\phi)}{\log(p)} + i\frac{2\pi\mathbb{Z}}{\log(p)}\right) \cup \left(-\frac{\log(\phi)}{\log(p)} + i\frac{(2\pi+1)\mathbb{Z}}{\log(p)}\right).$$

Example (con't)

 $And \ so$

$$\zeta_{\mathscr{F}}(s) = \left(\frac{p-2}{p} + \frac{p-1}{p^2}p^{1-s}\right) \frac{\sqrt{5}p^{2s}}{(p^s - \phi)(p^2 - \psi)}.$$

Therefore

$$\mathscr{P}(\mathscr{F}) = \left(\frac{\log(\phi)}{\log(p)} + i\frac{2\pi\mathbb{Z}}{\log(p)}\right) \cup \left(-\frac{\log(\phi)}{\log(p)} + i\frac{(2\pi+1)\mathbb{Z}}{\log(p)}\right).$$

Example

Let \mathscr{A} denote the attractor of the IFS shown to the left.

Example

Let \mathscr{A} denote the attractor of the IFS shown to the left. With respect to d^{∞} ,

$$\begin{aligned} \mathscr{P}(\mathscr{A}) &= \left(\frac{3\log(2)}{2\log(3)} + i\frac{\pi\mathbb{Z}}{\log(3)}\right) \\ & \cup \left(\frac{\log(4)}{\log(3)} - 1 + i\frac{2\pi\mathbb{Z}}{\log(3)}\right). \end{aligned}$$

- Michel L. Lapidus and Hùng Lũ', Nonarchimedean cantor set and string, J. Fixed Point Theory and Appl. 3 (2008), no. 1, 181–190.
- [2] Michel L. Lapidus, Goran Radunović, and Darko Žubrinić, Fractal zeta functions and fractal drums, Springer, 2017.
- [3] Curt McMullen, The Hausdorff dimension of general Sierpński carpets, Nagoya Mathematical J. 96 (1984), 1–9.