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The following notes are taken (almost word-for-word, in many places) from:

James C. Robinson, Dimensions, embeddings, and attractors, Cambridge Uni-
versity Press, Cambridge, 2011.

1 Homogeneity

Definition 1.1. Let (X,d) be a metric space and A C X. Given positive
constants M and s, we say that A is (M,s)-homogeneous if the intersection of A
with any r-ball can be covered by M (r/p)® or fewer p-balls, where p < r. More
generally, we will say that a set is homogeneous if it is (M, s)-homogeneous for
some M and s.

For notational convenience, we define notation for “ball counting.” Given
A C X, let N(A;r) denote the number of r-balls required to cover A, and
(informally) let N (A;r, p) denote the maximal number of p-balls required to
cover an r-ball centered in A. More exactly,

N(A;r, p) == sup N(A N B(xz,7); p),

z€A

The condition of homogeneity can then be expressed as follows: a set A C X is
(M, s)-homogeneous if

N(A;r, p) < M<%>S (1.1)

forall0 < p <.
Example 1.2. Every subset of RN is ((4v/N)N, N)-homogeneous.

Proof. Consider the ball of radius r centered at the origin. This ball is contained
in the cube [—7,7]"V. This cube can be covered by [(2rv/N/p) + 1] =: K cubes
of side length p/v/N, where p < r—let {C;} denote this collection of cubes.
Each cube C; is contained in some p-ball B;, hence

K K
B(0,7) C [—T,T]N C U C; C U B;.
i=1 i=1



Then, in the notation developed above, N (B(0,7);p) < K, hence we seek to
bound K. It is an exercise to show that

N

) =wr(5)

2r
K= <
p/VN
from which it follows that N(B(0,7); p) < (4VN)N(r/p)N. Translating an r-
ball away from the origin will not change any of the above analysis, and the

intersection of an r-ball with a set will not require more p-balls to cover, thus
for any A C RV, any x € A, and any 0 < p < r, we have

N
N(A;r,p) < N(AN B(z,r);p) < N(B(z,7);p) < (4\/N)N<£)

That is, as per the condition given at (1.1), any subset of RY is ((4v/N)V, N)-
homogeneous. O

We note that in the above, (4v/N) is not sharp. Robinson claims that the
result holds if we replace (4v/N)N with 2V*!. However, as discussed below,
the scaling constant is inessential for our purposes, hence we aren’t terribly
concerned with obtaining sharp bounds.

Proposition 1.3. Suppose that (X,dx) and (Y,dy) are metric spaces, that X
is (M, s)-homogeneous, and that the map f : X — Y is bi-Lipschitz, i.e. there
is some L > 0 such that

L Ydx (w1, 22) < dy (f(z1), f(22)) < Ldx (1, 2)
for all x1,m2 € X. Then f(X) is a (ML?®,s)-homogeneous subset of Y.

Proof. Let y € f(X) and consider f(X) N B(y,r). Let x = f~(y). As f is
bi-Lipschitz, it is invertible and, moreover, we have

fHf(X) N Bly, 7)) € Bz, Lr).

As X is (M, s)-homogeneous, for any p < r we have

N(B(x,Lr); %) < M<pL/—TL)S - ML25<£)8

That is, there is a collection of at most K balls of the form B(z;, p/L) such that

: K.

K
B(x,Lr) € | Bz, p/L).
j=1

Mapping forward with f, we obtain

K

1 j=1

=

f(X) N B(y,r) € f(B(x,Lr)) C f

J



As we have covered the intersection of f(X) and an arbitrary r-ball with K (or
fewer) p-balls, and the choices of r and p were arbitrary, we have have

N(rxgp) < & =z ()

Again, as per condition (1.1), we have that f(X) is (M L?*, s)-homogeneous. [
The punchline here is that homogeneity is preserved under bi-Lipschitz map-
pings. Moreover, in light of example 1.2, this is sufficient to show that homo-

geneity is a necessary (though, as we’ll discuss later, not sufficient) condition
for the existence of a bi-Lipschitz embedding.

Definition 1.4. A set A C (X,d) is doubling if there exists some C' > 0 such
that
N(A;rr/2) <C

for all r > 0.
Proposition 1.5. A set A C (X, d) is homogeneous if and only if it is doubling.
Proof. First, suppose that A is (M, s)-homogeneous. Then
r S
A; )< M(— | =2°M
and so A is doubling with constant C = 2°M.

Conversely, suppose that A is doubling, so that N(4;r,r/2) < C for all
r > 0. Fix some p < r and choose n such that

r
o SP< oot

Note that this implies
log2<z> >n—1 (1.2)
P

Given an arbitrary x € A, we may cover A N B(z,r) with p-balls by first
covering it with r/2-balls, then covering each r/2-ball with r/4-balls, and so on.
This gives the following computation:

N(Airp) = N(Airr/2) - N(Air/22,0/27 ) N( A /27, )
< N(4;r, r/2) .- N(A;T/Qn_Q, 7“/2"_1) N(4; 7“/2"_1, r/2m)

>N (Asr /2= 1p)

<c"
=ccn!
< CClos2(r/p) (as per the estimate at (1.2))
_ C(f)logz(c) |
p
Thus A is (C,log,(C'))-homogeneous. O



2 Assouad Dimension

In most applications, the scaling constant M plays very little role, hence it is
natural to make the following definition:

Definition 2.1. The Assouad dimension of a space (X,d), denoted dim4(X),
is the infimal s such that (X, d) is (M, s)-homogeneous for some M > 1.

The following proposition lists several basic properties of the Assouad dimen-
sion. Note that (a) and (b) follow very quickly from the definition, while (c)
was proved in proposition 1.3.

Proposition 2.2.
(a) If AC B C(X,d), then dimy(A) < dima(B).
(b) If A,B C (X,d), then dims(A U B) < max(dim(A),dim(B)).
(¢) dimy is invariant under bi-Lipschitz mappings.
(d) If X CRY is open, then dima(X) = N.
(e) If X is compact, then dimyp(X) < dima(X), where dimyp denote the
upper boz-counting dimension.

Proof (d). Tt was shown in example 1.2 that R" is homogeneous with exponent
N, hence dim4(RY) < N. As the Assouad dimension is monotone (part (a)
of the current proposition), it follows that dim4(X) < N. Let B C X be an
open ball with radius r, and suppose for contradiction that dimx(B) < s <
dim4(X) < N. But then B is (M, s)-homogeneous for some M > 1. But then
B can be covered by M(r/p)® balls of radius p, hence

r S r S
u(B) < 01( ) ul80,0)) < bt () 9 = Mg,
But N —s > 1, and p > 0 is arbitrary, which implies that u(B) = 0. This is a
contradiction, hence we have N < dim4(B) < dimy(X) < N. O

Proof (e). Recall that
: . log(NV(X;¢))
d X)<l1 —
mus(X) < limswp =LA

and let s > dimy4 (X)), from which it follows that X is (M, s)-homogeneous for
some M > 1. As X is compact, it is bounded, and so there is some R > 0 such
that X C B(0, R). It then follows that for any p < R, we have

N(X;p) = N(X N B(0,R); p) < M<E)s = (MR*)p~".

p
But then
. . S —S
oy BV E) L Tos W (Xip) _ o logl(MR)™] _
£—0 log(1/¢) p—0  log(1/p) p—0  log(1/p)
which gives the desired result. O



Proposition 2.3. If (X,dx) and (Y,dy) are metric spaces, then
dimA(X X Y) < dlmA(X) + dimA(Y),
where X XY is equipped with any metric d, of the form

do((x1,91), (@2, 42)) = [dx (1, 22)* + dy (y1,42)*]*

for some a € [1,00), or the metric

doo((z1, 1), (2, y2)) = max(dx (v1,72), dy (y1,Y2))-

Proof. For any «, 8 € [1, 00|, the metrics d, and dg are equivalent, and so the
space (X X Y,d,) can be mapped to the space (X X Y,dg) via a bi-Lipschitz
map. As the Assouad dimension is invariant under such maps, we may assumed
without loss of generality that X x Y is equipped with the d., metric.

Assume that s > dimy(X) and ¢ > dima(Y). Then there are constants
M, N > 1 such that

t

N(X;r,mgM(g) . and N(y;r,p)w(%) |

Let B be a ball of radius r in X x Y. Then, as we have assumed that X x Y is
equipped with the dy, metric, it follows that B = U x V, where U and V are
balls of radius r in X and Y, respectively.

We may cover U by a collection {U;} of at most N'(X;r, p) balls of radius p,
and we may cover V by a collection {V;} of at most N (Y;r,p) balls of radius
p- But then the collection {U; x V;} is a cover of B which contains at most

N(Xr, PNV 7, p) < M<;>N<;> _ MN@M

balls of radius p. Hence X x Y is (M N, s + t)-homogeneous, which completes
the proof. O

Unlike the Hausdorff and upper box-counting dimensions, the Assouad di-
mension can be quite poorly behaved with respect to orthogonal sequences.
The following proposition gives an example of a sequence with infinite Assouad
dimension:

Proposition 2.4. Let {e,} be an orthonormal sequence in a Hilbert space, and
let X ={n"%e, :n € N} U {0}, where a > 0. Then dim4(X) = co.

Proof. For each m € N, let r,, = m™ and consider the set
X NBO,rm) ={n %, :n>m}U{0}.

We seek to cover this set by balls of radius r,, /2. Every point in this set that has
norm greater than r,,/2 will require a separate ball, so we estimate the number
of such balls. That is, we need to know how many n satisfy the inequality

'm

5 < ln™%en|| < rm.



Equivalently,

—x

2

There are at least 21/*m — 1 — m integers n that satisfy this inequality, hence

<n < m = 2V > n>m.

N(X;7m,1m/2) = 2Y%m — 1 —m =m(2/* — 1) - 1.

As the quantity on the right-hand side tends to infinity as m — oo, it follows
that X cannot be a doubling set. Hence by proposition 1.5, X is not (M, s)-
homogeneous for any s. Therefore dim4(X) = oo, as claimed. O

In contrast to this result, it can be shown that dimgy(X) = 0 (dimx(X)
denotes the Hausdorff dimension of X) and that dimyp(X) = 1/a. Several
other results involving orthogonal sequences are of interest.

Proposition 2.5. Let {e,} be an orthonormal sequence in a Hilbert space, and
consider the set X = {anen 52, U {0}.
(a) If there is some K > 0 and 0 < a < 1 such that K~ 'a™ < a, < Ka",
then dimx (X) = 0.
(b) There exist sequences {an} converging to zero arbitrarily quickly such that
dim 4 (X) = oo, hence the lower bound in part (a) is necessary.

Proposition 2.6. There exists a subset X of Hilbert space with dim4(X) =0
and dima (X — X) =o0, where X — X ={x —y: 2,y € X}.

This result is of interest for at least two reasons. First, it demonstrates that
the Assouad dimension can increase under Lipschitz maps since dim4 (X x X)) <
2dima(X), and X — X is the image of X x X under the Lipschitz mapping
(z,y) = = —y. Hence the lower bound in proposition 1.3 really is necessary.

Second, many embedding results that use linear maps rest on strong dimen-
sional assumptions on the set of differences X — X. The upper box-counting
dimension is well-behaved in the sense that dimyp(X —X) < 2dimyp(X). Un-
fortunately, the Assouad dimension, like the Hausdorff dimension, displays the
kind of “pathology” described above. Finally:

Proposition 2.7. Let X = {x,}>2, be an orthogonal sequence in Hilbert space.
If dimy (X) < oo, then dima(X — X) < 2dima(X).

3 The Laakso Graph

It was noted above that if (X,d) is a metric space, then the homogeneity of
X is a necessary condition for the existence of a bi-Lipschitz embedding of X
into Euclidean space. The Laakso graph gives an example of a homogeneous
metric space that cannot be embedded, demonstrating that homogeneity is not
a sufficient condition.

To construct the Laakso graph, first let 'y = [0, 1]. To obtain I'; 1, take six
copies of I'; and scale them by 1/4. Identify endpoints of four of these copies
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Figure 3.1: The first three steps in the construction of the Laakso graph. The
heavier lines in I'; show an isometric copy of 'y, while the heavier lines in I'y
show an isometric copy of I';.

to form a “square,” and attach the remaining two copies to opposite vertices of
this square. The first three steps are shown in figure 3.1.

At the j-th step, the graph consists of 67 edges of length 4=7. A natural
metric d; on I'; is given by geodesic distance, i.e. if z,y € T'; then d;(z,y) is
the minimal length of a path from x to y. Note that I'; is isometrically embed-
ded into I'j4; for each j. Again, see figure 3.1. The sequence of metric spaces
{(Ty,d;)}52, is Cauchy, and therefore converges, in the Gromov-Hausdorff met-
ric. Let (I, d) denote this limit space. Note that (T', d) contains isometric copies
of (I';, d;) for each j.

We claim without proof that (T',d) is a doubling space with constant 6. In
particular, this implies that (I',d) is homogeneous. However, as we will show
below, (I',d) cannot be embedded into any finite dimensional Euclidean space
via a bi-Lipschitz map. We first require the following lemma:

Lemma 3.1. Let 52 denote Hilbert space, and suppose that f : I' — € satisfies
the property that || f;(z)— f; ()| > d;(x,y) for each j, where f; is any restriction
of f to an isometric copy of I'; in I'. Then there exists a pair of consecutive
vertices x,x’ € I'; such that

I5@) = 1 = (145 ) dyton' (3.1)

Proof. The proof is by induction. The inequality at (3.1) holds by hypothesis



when j = 0, establishing a base for induction. Now suppose that there is some
j—1 > 0such that (3.1) holds for some consecutive pair of vertices z,z" € I'j_;.
As T'; contains an isometric copy of I';_1, the vertices = and x’ correspond to
some points o and z2 in I';, respectively, so that

I -sal 2 (1427 ) dstana? = (14258 ) dyan.a?. 02

Let x1 and z3 be the two midpoints between xg and xo. Setting x4 := xo,
we then obtain

3
Do If ) = flawe)l® 2 11f (20) = fa2)|* + |1 (21) = fla3)]?
k=1

(“quadrilateral inequality”)

| — 1
Z <1 —+ jT) dj(iL‘(),iL‘Q)Q + dj($1,$3)2
(by (3.2); hypothesis on f)

=4 <1 + i) dj($1,$3)2.
(since 2d;(z1,x3) = d;(x0, x2))
It then follows from the pigeonhole principle that there is some k € {0, 1,2,3}
such that

4

Take 2’ to be the midpoint between zy and xgy1. It follows from the triangle
inequality that

I @x) = £GP + 1) = Fanan)l? = (145 ) dyGons i)

1) — Flzn) 2 > <1 n i) d;(e1, 25)".

= (1 + i) [dj (g, 2") + dj (2, xpi1)] -

By another application of the pigeonhole principle, we may take x to be either
Z) Or Tp41 in order to obtain (3.1). O

Proposition 3.2. The metric space (I',d) cannot be embedded into finite di-

mensional Fuclidean space via a bi-Lipschitz map.

Proof. Let f:T' — 5, and suppose that there is some L > 0 such that
L7d(z,y) < || f(z) = f(y)ll < Ld(z,y).

But then g : I' — 5% defined by ¢g(z) = Lf(z) is a map that, when restricted
to any isometric copy of T';, satisfies d(z,y) < ||g(z) — g(y)||. By lemma 3.1,

j 1/2
(14—1) d(z.y) < llg(@) - gl < L2d(x,y) Vi,

which is a contradiction. O



