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The following notes are taken (almost word-for-word, in many places) from:

James C. Robinson, Dimensions, embeddings, and attractors, Cambridge Uni-
versity Press, Cambridge, 2011.

1 Homogeneity

Definition 1.1. Let (X, d) be a metric space and A ⊆ X . Given positive
constants M and s, we say that A is (M,s)-homogeneous if the intersection of A
with any r-ball can be covered by M(r/ρ)s or fewer ρ-balls, where ρ < r. More
generally, we will say that a set is homogeneous if it is (M, s)-homogeneous for
some M and s.

For notational convenience, we define notation for “ball counting.” Given
A ⊆ X , let N (A; r) denote the number of r-balls required to cover A, and
(informally) let N (A; r, ρ) denote the maximal number of ρ-balls required to
cover an r-ball centered in A. More exactly,

N (A; r, ρ) := sup
x∈A

N (A ∩ B(x, r); ρ),

The condition of homogeneity can then be expressed as follows: a set A ⊆ X is
(M, s)-homogeneous if

N (A; r, ρ) ≤ M

(
r

ρ

)s

(1.1)

for all 0 < ρ < r.

Example 1.2. Every subset of RN is ((4
√
N)N , N)-homogeneous.

Proof. Consider the ball of radius r centered at the origin. This ball is contained
in the cube [−r, r]N . This cube can be covered by [(2r

√
N/ρ)+1]N =: K cubes

of side length ρ/
√
N , where ρ < r—let {Ci} denote this collection of cubes.

Each cube Ci is contained in some ρ-ball Bi, hence

B(0, r) ⊆ [−r, r]N ⊆
K⋃
i=1

Ci ⊆
K⋃
i=1

Bi.
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Then, in the notation developed above, N (B(0, r); ρ) ≤ K, hence we seek to
bound K. It is an exercise to show that

K =

(
2r

ρ/
√
N

+ 1

)N

≤ (4
√
N)N

(
r

ρ

)N

,

from which it follows that N (B(0, r); ρ) ≤ (4
√
N)N (r/ρ)N . Translating an r-

ball away from the origin will not change any of the above analysis, and the
intersection of an r-ball with a set will not require more ρ-balls to cover, thus
for any A ⊆ R

N , any x ∈ A, and any 0 < ρ < r, we have

N (A; r, ρ) ≤ N (A ∩ B(x, r); ρ) ≤ N (B(x, r); ρ) ≤ (4
√
N)N

(
r

ρ

)N

.

That is, as per the condition given at (1.1), any subset of RN is ((4
√
N)N , N)-

homogeneous.

We note that in the above, (4
√
N)N is not sharp. Robinson claims that the

result holds if we replace (4
√
N)N with 2N+1. However, as discussed below,

the scaling constant is inessential for our purposes, hence we aren’t terribly
concerned with obtaining sharp bounds.

Proposition 1.3. Suppose that (X, dX) and (Y, dY ) are metric spaces, that X
is (M, s)-homogeneous, and that the map f : X → Y is bi-Lipschitz, i.e. there
is some L > 0 such that

L−1dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ LdX(x1, x2)

for all x1, x2 ∈ X. Then f(X) is a (ML2s, s)-homogeneous subset of Y .

Proof. Let y ∈ f(X) and consider f(X) ∩ B(y, r). Let x = f−1(y). As f is
bi-Lipschitz, it is invertible and, moreover, we have

f−1(f(X) ∩ B(y, r)) ⊆ B(x, Lr).

As X is (M, s)-homogeneous, for any ρ < r we have

N
(
B(x, Lr);

ρ

L

)
≤ M

(
Lr

ρ/L

)s

= ML2s

(
r

ρ

)s

=: K.

That is, there is a collection of at most K balls of the form B(xj , ρ/L) such that

B(x, Lr) ⊆
K⋃
j=1

B(xj , ρ/L).

Mapping forward with f , we obtain

f(X) ∩ B(y, r) ⊆ f(B(x, Lr)) ⊆ f


 K⋃

j=1

B(xj , ρ/L)


 ⊆

K⋃
j=1

B(f(xj), ρ).
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As we have covered the intersection of f(X) and an arbitrary r-ball with K (or
fewer) ρ-balls, and the choices of r and ρ were arbitrary, we have have

N (f(X); ρ) ≤ K = ML2s

(
r

ρ

)s

.

Again, as per condition (1.1), we have that f(X) is (ML2s, s)-homogeneous.

The punchline here is that homogeneity is preserved under bi-Lipschitz map-
pings. Moreover, in light of example 1.2, this is sufficient to show that homo-
geneity is a necessary (though, as we’ll discuss later, not sufficient) condition
for the existence of a bi-Lipschitz embedding.

Definition 1.4. A set A ⊆ (X, d) is doubling if there exists some C > 0 such
that

N (A; r, r/2) ≤ C

for all r > 0.

Proposition 1.5. A set A ⊆ (X, d) is homogeneous if and only if it is doubling.

Proof. First, suppose that A is (M, s)-homogeneous. Then

N (A; r, r/2) ≤ M

(
r

r/2

)s

= 2sM,

and so A is doubling with constant C = 2sM .
Conversely, suppose that A is doubling, so that N (A; r, r/2) ≤ C for all

r > 0. Fix some ρ < r and choose n such that

r

2n
≤ ρ <

r

2n−1
.

Note that this implies

log2

(
r

ρ

)
> n− 1. (1.2)

Given an arbitrary x ∈ A, we may cover A ∩ B(x, r) with ρ-balls by first
covering it with r/2-balls, then covering each r/2-ball with r/4-balls, and so on.
This gives the following computation:

N (A; r, ρ) = N (A; r, r/2) · · · N (A; r/2n−2, r/2n−1)N (A; r/2n−1, ρ)

≤ N (A; r, r/2) · · · N (A; r/2n−2, r/2n−1) N (A; r/2n−1, r/2n)︸ ︷︷ ︸
≥N (A;r/2n−1,ρ)

≤ Cn

= CCn−1

≤ CC log2(r/ρ) (as per the estimate at (1.2))

= C

(
r

ρ

)log2(C)

.

Thus A is (C, log2(C))-homogeneous.
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2 Assouad Dimension

In most applications, the scaling constant M plays very little role, hence it is
natural to make the following definition:

Definition 2.1. The Assouad dimension of a space (X, d), denoted dimA(X),
is the infimal s such that (X, d) is (M, s)-homogeneous for some M ≥ 1.

The following proposition lists several basic properties of the Assouad dimen-
sion. Note that (a) and (b) follow very quickly from the definition, while (c)
was proved in proposition 1.3.

Proposition 2.2. .

(a) If A ⊆ B ⊆ (X, d), then dimA(A) ≤ dimA(B).

(b) If A,B ⊆ (X, d), then dimA(A ∪ B) ≤ max(dimA(A), dimA(B)).

(c) dimA is invariant under bi-Lipschitz mappings.

(d) If X ⊆ R
N is open, then dimA(X) = N .

(e) If X is compact, then dimUB(X) ≤ dimA(X), where dimUB denote the
upper box-counting dimension.

Proof (d). It was shown in example 1.2 that RN is homogeneous with exponent
N , hence dimA(R

N ) ≤ N . As the Assouad dimension is monotone (part (a)
of the current proposition), it follows that dimA(X) ≤ N . Let B ⊆ X be an
open ball with radius r, and suppose for contradiction that dimA(B) < s ≤
dimA(X) < N . But then B is (M, s)-homogeneous for some M ≥ 1. But then
B can be covered by M(r/ρ)s balls of radius ρ, hence

µ(B) ≤ M

(
r

ρ

)s

µ(B(0, ρ)) ≤ MΩN

(
r

ρ

)s

ρN = MΩNrsρN−s.

But N − s > 1, and ρ > 0 is arbitrary, which implies that µ(B) = 0. This is a
contradiction, hence we have N ≤ dimA(B) ≤ dimA(X) ≤ N .

Proof (e). Recall that

dimUB(X) ≤ lim sup
ε→0

log(N (X ; ε))

log(1/ε)
,

and let s > dimA(X), from which it follows that X is (M, s)-homogeneous for
some M ≥ 1. As X is compact, it is bounded, and so there is some R > 0 such
that X ⊆ B(0, R). It then follows that for any ρ < R, we have

N (X ; ρ) = N (X ∩ B(0, R); ρ) ≤ M

(
R

ρ

)s

= (MRs)ρ−s.

But then

lim sup
ε→0

log(N (X ; ε))

log(1/ε)
= lim

ρ→0

log(N (X ; ρ))

log(1/ρ)
≤ lim

ρ→0

log[(MRs)ρ−s]

log(1/ρ)
= s,

which gives the desired result.
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Proposition 2.3. If (X, dX) and (Y, dY ) are metric spaces, then

dimA(X × Y ) ≤ dimA(X) + dimA(Y ),

where X × Y is equipped with any metric dα of the form

dα((x1, y1), (x2, y2)) = [dX(x1, x2)
α + dY (y1, y2)

α]1/α

for some α ∈ [1,∞), or the metric

d∞((x1, y1), (x2, y2)) = max(dX(x1, x2), dY (y1, y2)).

Proof. For any α, β ∈ [1,∞], the metrics dα and dβ are equivalent, and so the
space (X × Y, dα) can be mapped to the space (X × Y, dβ) via a bi-Lipschitz
map. As the Assouad dimension is invariant under such maps, we may assumed
without loss of generality that X × Y is equipped with the d∞ metric.

Assume that s > dimA(X) and t > dimA(Y ). Then there are constants
M,N ≥ 1 such that

N (X ; r, ρ) ≤ M

(
r

ρ

)s

, and N (Y ; r, ρ) ≤ N

(
r

ρ

)t

.

Let B be a ball of radius r in X × Y . Then, as we have assumed that X × Y is
equipped with the d∞ metric, it follows that B = U × V , where U and V are
balls of radius r in X and Y , respectively.

We may cover U by a collection {Ui} of at most N (X ; r, ρ) balls of radius ρ,
and we may cover V by a collection {Vj} of at most N (Y ; r, ρ) balls of radius
ρ. But then the collection {Ui × Vj} is a cover of B which contains at most

N (X ; r, ρ)N (Y ; r, ρ) ≤ M

(
r

ρ

)s

N

(
r

ρ

)t

= MN

(
r

ρ

)s+t

balls of radius ρ. Hence X × Y is (MN, s + t)-homogeneous, which completes
the proof.

Unlike the Hausdorff and upper box-counting dimensions, the Assouad di-
mension can be quite poorly behaved with respect to orthogonal sequences.
The following proposition gives an example of a sequence with infinite Assouad
dimension:

Proposition 2.4. Let {en} be an orthonormal sequence in a Hilbert space, and
let X = {n−αen : n ∈ N} ∪ {0}, where α > 0. Then dimA(X) = ∞.

Proof. For each m ∈ N, let rm = m−α and consider the set

X ∩ B(0, rm) = {n−αen : n ≥ m} ∪ {0}.
We seek to cover this set by balls of radius rm/2. Every point in this set that has
norm greater than rm/2 will require a separate ball, so we estimate the number
of such balls. That is, we need to know how many n satisfy the inequality

rm
2

< ‖n−αen‖ ≤ rm.
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Equivalently,
m−α

2
< n−α ≤ m−α =⇒ 21/αm > n ≥ m.

There are at least 21/αm− 1−m integers n that satisfy this inequality, hence

N (X ; rm, rm/2) ≥ 21/αm− 1−m = m(21/α − 1)− 1.

As the quantity on the right-hand side tends to infinity as m → ∞, it follows
that X cannot be a doubling set. Hence by proposition 1.5, X is not (M, s)-
homogeneous for any s. Therefore dimA(X) = ∞, as claimed.

In contrast to this result, it can be shown that dimH(X) = 0 (dimX(X)
denotes the Hausdorff dimension of X) and that dimUB(X) = 1/α. Several
other results involving orthogonal sequences are of interest.

Proposition 2.5. Let {en} be an orthonormal sequence in a Hilbert space, and
consider the set X = {anen}∞n=1 ∪ {0}.
(a) If there is some K > 0 and 0 < α < 1 such that K−1αn ≤ an ≤ Kαn,

then dimA(X) = 0.

(b) There exist sequences {an} converging to zero arbitrarily quickly such that
dimA(X) = ∞, hence the lower bound in part (a) is necessary.

Proposition 2.6. There exists a subset X of Hilbert space with dimA(X) = 0
and dimA(X −X) = ∞, where X −X = {x− y : x, y ∈ X}.

This result is of interest for at least two reasons. First, it demonstrates that
the Assouad dimension can increase under Lipschitz maps since dimA(X×X) ≤
2 dimA(X), and X − X is the image of X × X under the Lipschitz mapping
(x, y) �→ x− y. Hence the lower bound in proposition 1.3 really is necessary.

Second, many embedding results that use linear maps rest on strong dimen-
sional assumptions on the set of differences X − X . The upper box-counting
dimension is well-behaved in the sense that dimUB(X−X) ≤ 2 dimUB(X). Un-
fortunately, the Assouad dimension, like the Hausdorff dimension, displays the
kind of “pathology” described above. Finally:

Proposition 2.7. Let X = {xn}∞n=1 be an orthogonal sequence in Hilbert space.
If dimA(X) < ∞, then dimA(X −X) ≤ 2 dimA(X).

3 The Laakso Graph

It was noted above that if (X, d) is a metric space, then the homogeneity of
X is a necessary condition for the existence of a bi-Lipschitz embedding of X
into Euclidean space. The Laakso graph gives an example of a homogeneous
metric space that cannot be embedded, demonstrating that homogeneity is not
a sufficient condition.

To construct the Laakso graph, first let Γ0 = [0, 1]. To obtain Γj+1, take six
copies of Γj and scale them by 1/4. Identify endpoints of four of these copies
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Γ0

Γ1

Γ2

Figure 3.1: The first three steps in the construction of the Laakso graph. The
heavier lines in Γ1 show an isometric copy of Γ0, while the heavier lines in Γ2

show an isometric copy of Γ1.

to form a “square,” and attach the remaining two copies to opposite vertices of
this square. The first three steps are shown in figure 3.1.

At the j-th step, the graph consists of 6j edges of length 4−j . A natural
metric dj on Γj is given by geodesic distance, i.e. if x, y ∈ Γj then dj(x, y) is
the minimal length of a path from x to y. Note that Γj is isometrically embed-
ded into Γj+1 for each j. Again, see figure 3.1. The sequence of metric spaces
{(Γj, dj)}∞j=0 is Cauchy, and therefore converges, in the Gromov-Hausdorff met-
ric. Let (Γ, d) denote this limit space. Note that (Γ, d) contains isometric copies
of (Γj , dj) for each j.

We claim without proof that (Γ, d) is a doubling space with constant 6. In
particular, this implies that (Γ, d) is homogeneous. However, as we will show
below, (Γ, d) cannot be embedded into any finite dimensional Euclidean space
via a bi-Lipschitz map. We first require the following lemma:

Lemma 3.1. Let H denote Hilbert space, and suppose that f : Γ → H satisfies
the property that ‖fj(x)−fj(y)‖ ≥ dj(x, y) for each j, where fj is any restriction
of f to an isometric copy of Γj in Γ. Then there exists a pair of consecutive
vertices x, x′ ∈ Γj such that

‖f(x)− f(x′)‖ ≥
(
1 +

j

4

)
dj(x, x

′)2. (3.1)

Proof. The proof is by induction. The inequality at (3.1) holds by hypothesis
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when j = 0, establishing a base for induction. Now suppose that there is some
j−1 > 0 such that (3.1) holds for some consecutive pair of vertices x, x′ ∈ Γj−1.
As Γj contains an isometric copy of Γj−1, the vertices x and x′ correspond to
some points x0 and x2 in Γj , respectively, so that

‖f(x0)−f(x2)‖ ≥
(
1 +

j − 1

4

)
dj−1(x0, x2)

2 =

(
1 +

j − 1

4

)
dj(x0, x2)

2. (3.2)

Let x1 and x3 be the two midpoints between x0 and x2. Setting x4 := x0,
we then obtain

3∑
k=1

‖f(xk)− f(xk+1)‖2 ≥ ‖f(x0)− f(x2)‖2 + ‖f(x1)− f(x3)‖2

(“quadrilateral inequality”)

≥
(
1 +

j − 1

4

)
dj(x0, x2)

2 + dj(x1, x3)
2

(by (3.2); hypothesis on f)

= 4

(
1 +

j

4

)
dj(x1, x3)

2.

(since 2dj(x1, x3) = dj(x0, x2))

It then follows from the pigeonhole principle that there is some k ∈ {0, 1, 2, 3}
such that

‖f(xk)− f(xk+1)‖2 ≥
(
1 +

j

4

)
dj(x1, x3)

2.

Take x′ to be the midpoint between xk and xk+1. It follows from the triangle
inequality that

‖f(xk)− f(x′)‖2 + ‖f(x′)− f(xk+1)‖2 ≥
(
1 +

j

4

)
dj(xk, xk+1)

=

(
1 +

j

4

)
[dj(xk, x

′) + dj(x
′, xk+1)] .

By another application of the pigeonhole principle, we may take x to be either
xk or xk+1 in order to obtain (3.1).

Proposition 3.2. The metric space (Γ, d) cannot be embedded into finite di-
mensional Euclidean space via a bi-Lipschitz map.

Proof. Let f : Γ → H , and suppose that there is some L > 0 such that

L−1d(x, y) ≤ ‖f(x)− f(y)‖ ≤ Ld(x, y).

But then g : Γ → H defined by g(x) = Lf(x) is a map that, when restricted
to any isometric copy of Γj , satisfies d(x, y) ≤ ‖g(x)− g(y)‖. By lemma 3.1,(

1 +
j

4

)1/2

d(x, y) ≤ ‖g(x)− g(y)‖ ≤ L2d(x, y) ∀j,

which is a contradiction.
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